MSL - SLAC11 Radiation Protection studies for SiD Mario Santana, SLAC / RP 2010 Linear Collider Workshop & International Linear Collider Meeting Tsinghua.

Slides:



Advertisements
Similar presentations
Photon Collimation For The ILC Positron Target Lei Zang The University of Liverpool Cockcroft Institute 24 th March 2007.
Advertisements

Stefan Roesler SC-RP/CERN on behalf of the CERN-SLAC RP Collaboration
Monte Carlo simulation of the background for the Drell-Yan COMPASS Marialaura Colantoni Laboratory of Nuclear Problems Dubna Marialaura.
Beam-plug and shielding studies related to HCAL and M2 Robert Paluch, Burkhard Schmidt November 25,
Question from the GDE : Could local “doughnut” type muon spoilers like those in SLC be substituted for the 5 meter magnetized wall? 5m magnetized wall.
1 Activation problems S.Agosteo (1), M.Magistris (1,2), Th.Otto (2), M.Silari (2) (1) Politecnico di Milano; (2) CERN.
Energy deposition and neutron background studies for a low energy proton therapy facility Roxana Rata*, Roger Barlow* * International Institute for Accelerator.
Estimation of the effects of a lead vest on dose reduction for NPP workers using Monte Carlo calculations KIM JEONG-IN.
Using FLUKA to study Radiation Fields in ERL Components Jason E. Andrews, University of Washington Vaclav Kostroun, Mentor.
Shielding Studies using MARS Monte Carlo code Noriaki Nakao (SLAC) Jan. 6, 2005, WORKSHOP Machine-Detector Interface at ILC, SLAC.
BLM review Mario Santana Leitner OUTLOOK ON FLUKA SIMULATIONS FOR UDULATOR DAMAGE AND BLM RESPONSE Mario Santana Leitner, Alberto.
PROBLEM: Radiation Dose Rate in IR2 When IR1 is Operating (and Vice Versa) Muon Dose Rate > 1 mRem/hr for 0.1% Collimated Halo.
Induced Activity Calculations in Support of D&D Activities at SLAC Joachim Vollaire, Radiation Protection Department.
NLC - The Next Linear Collider Project Backgrounds Update Tom Markiewicz SLAC LCWS Cornell 15 July 2003.
1 Induced radioactivity in the target station and in the decay tunnel from a 4 MW proton beam S.Agosteo (1), M.Magistris (1,2), Th.Otto (2), M.Silari (2)
1 Radiation Safety Aspects of the Linear Collider B. Racky, A. Leuschner, N. Tesch Radiation Protection Group TeV Superconducting Linear Accelerator.
Contents of talk May 2 nd 2006 Y. Muraki on behalf of the LHCf 1. Physics goal 2. The BRAN detector 3. The particle distribution inside the BRAN 4. In.
Energy deposition for intense muon sources (chicane + the rest of the front end) Pavel Snopok Illinois Institute of Technology and Fermilab December 4,
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
October 13, 2006 Global Design Effort 1 International Linear Collider Machine Detector Interface Materials for discussion at Engineering Forum: experiences.
1 Dr. Sandro Sandri (President of Italian Association of Radiation Protection, AIRP) Head, Radiation Protection Laboratory, IRP FUAC Frascati ENEA – Radiation.
User Documents and Examples II Geant4 Tutorial at Marshall Space Flight Center 18 April 2012 Dennis Wright (SLAC) Geant4 V9.5.
FLUKA Rechnungen für das CBM Experiment an FAIR
Beam Commissioning Marco Oriunno (SLAC), May 14, 2014 ALCW 2014, Fermilab Engineering Issues.
Octobre MPI Munich FCAL Workshop in Munich W. Lohmann, DESY The 14 mrad X-angle, two IPs The push-pull option The next calendar dates Where we are.
Thanks to Andrei for slides October 26, 一般報告 Hitoshi Yamamoto, Oct 26, 2006.
The Status of ESS Accelerator Shielding and Accident Scenarios Lali Tchelidze May 26, 2014.
Guinyun Kim (KNU, Korea) International Linear Collider Workshop 2010 Beijing, China, March 2010 Summary of Machine Detector Interface.
Simulation of physics background for luminosity calorimeter M.Pandurović I. Božović-Jelisavčić “Vinča“ Institute of Nuclear Sciences, Belgrade, SCG.
Radiation safety evaluation for “KAMABOKO” Main Linac Tunnel KEK-APL : T.Sanami, S.Ban KEK-ACC : A.Enomoto, M.Miyahara ILC Mechanical & Electrical Review.
Geant4 in production: status and developments John Apostolakis (CERN) Makoto Asai (SLAC) for the Geant4 collaboration.
Monte Carlo methods in ADS experiments Study for state exam 2008 Mitja Majerle “Phasotron” and “Energy Plus Transmutation” setups (schematic drawings)
Update on the Hall C Monte Carlo simulation for 12 GeV Mark Jones.
1 Authored by Jefferson Science Associates, LLC under DOE Contract # DE-AC05-06OR23177P. Degtiarenko 12/13/2009 GEANT3/4 Simulations for Radiation Budget.
First radiological estimates for the HIRADMAT project H. Vincke and N. Conan 1.
F. Negoita, Bucuresti, 28 Feb Participation of NIPNE-Bucharest in SPIRAL2 Project.
PSB dump replacement 17 th November 2011 LIU-PSB meeting Alba Sarrió.
ANITA workshop, Uppsala, december 2008 ANITA neutron source Monte Carlo simulations and comparison with experimental data Mitja Majerle Nuclear Physics.
1 Neutron Effective Dose calculation behind Concrete Shielding of Charge Particle Accelerators with Energy up to 100 MeV V. E Aleinikov, L. G. Beskrovnaja,
An Hybrid QD0 for SID ? Marco Oriunno (SLAC), Nov. 14, 2013 LCWS13, TOKYO.
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Lumical R&D progress report Ronen Ingbir.
Radiation protection and radiation safety issues for HIE-ISOLDE. FLUKA calculations Y. Romanets ISOLDE Workshop and Users meeting 2010 CERN, 8 December.
Radiation Protection studies for the Linac4 / Linac2 interface Joachim Vollaire, DGS-RP 28/09/2015 Linac4 Coordination Meeting.
Radiation study of the TPC electronics Georgios Tsiledakis, GSI.
1 Simulation of Neutron Backgrounds in the ILC Extraction Line Beam Dump Siva Darbha Supervisors: Lewis Keller and Takashi Maruyama.
BNL neutrino beam. Optimization and simulations Milind Diwan June 10.
HEP Tel Aviv University Lumical R&D progress report Ronen Ingbir ECFA - Durham2004 Lumical - A Future Linear Collider detector.
4´th ISOE European Workshop on Occupational Exposure Management at NPP´s March 2004 – Lyon France “ALARA” versus reactor safety concern - A practical.
Monte Carlo methods in spallation experiments Defense of the phD thesis Mitja Majerle “Phasotron” and “Energy Plus Transmutation” setups (schematic drawings)
R.W. Assmann, V. Boccone, F. Cerutti, M. Huhtinen, A. Mereghetti
Primary Radiation Calculation for Sun Yat-Sen Proton Hospital
Induced-activity experiment:
Luminosity Measurement using BHABHA events
Measurements and FLUKA Simulations of Bismuth and Aluminum Activation at the CERN Shielding Benchmark Facility(CSBF) E. Iliopoulou, R. Froeschl, M. Brugger,
Inter-comparison of Particle production (2)
Radiation protection of Linac4 M. Silari Radiation Protection Group
Neutron and Photon Backscattering from the ILC Beam Dump
M. Calviani, A. Ferrari (EN/STI), P. Sala (INFN)
Numerical simulations on single mask conical GEMs
Radiation Physics requirements for the IR
Guinyun Kim (KNU, Korea) International Linear Collider Workshop 2010
Fassò, N. Nakao, H. Vincke Aug. 2, 2005
Fragmentation cross sections of Fe26+, Si14+ and C6+ ions of 0
CFS consideration on the Main Dump and around
Higgs Factory Backgrounds
HL-LHC operations with LHCb at high luminosity
Simulation of Neutron Backgrounds in the ILC Extraction Line Beam Dump
Estimation of the effects of a lead vest on dose reduction for NPP workers using Monte Carlo calculations KIM JEONG-IN.
Monte Carlo simulations for the ODIN shielding at ESS
MAGiC Shielding Simulations
Presentation transcript:

MSL - SLAC11 Radiation Protection studies for SiD Mario Santana, SLAC / RP 2010 Linear Collider Workshop & International Linear Collider Meeting Tsinghua University, Beijing university, Institute of Theoretical Physics, University of Sciences and Technologies of China

MSL - SLAC2 1.Geometry and Monte Carlo Settings 2.Dose limits and Beam Conditions 3.Interface pacman-cavern 4.Pacman and penetration 5.SiD detector 6.Ongoing studies 7.Provisional conclusions Overview

MSL - SLAC3 A A’ B B’ C C’ D D’ SiD Geometry implementation b b’

MSL - SLAC4 Geometry: end shafts A-A’ C-C’

MSL - SLAC5 Geometry: pacman and SiD B-B’ SiD elevation at beam plane Small PACMAN SiD elevation at beam plane Large PACMAN 50 cm steel cm concrete 120 cm steel cm concrete

MSL - SLAC6 Geometry: pacman-cavern interface CURRENT DESIGN PREVIOUS DESIGN

MSL - SLAC7 Geometry: pacman penetrations b-b’

MSL - SLAC8 Geometry: cross section at IP D-D’ Cavern cross section at IP Small PACMAN

MSL - SLAC9 Geometry: SiD SiD cross section at IP SiD top view

Monte Carlo tools and methods FLUKA Intra Nuclear cascade code – Latest version – LAM-BIASING, Photonuclear/Photomuon reactions Deq99 fluence to dose conversion routine FLAIR GUI PARALLEL simulations at SLAC farm: about CPU-hour (some more biasing required…) V.Vlachoudis "FLAIR: A Powerful But User Friendly Graphical Interface For FLUKA“ Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics M&C 2009), Saratoga Springs, New York, 2009

MSL - SLAC11 Dose limits Annual Occupational Dose Limits (Radiation Worker): - DOE/DOD: 50 mSv (5000 mrem). Rad worker. - ICRP: 20 mSv (2000 mrem). Rad worker. - SLAC: 5 mSv (500 mrem). Rad worker. 1 mSv (100 mrem). GERT. Dose limit per accident: - SLAC: 30 mSv (3000 mrem) Dose rate limit for an accident: - SLAC: 250 mSv/h (25 rem/h) µSv/event For our beam conditions: 1 µSv/event  18 mSv/h

Beam conditions / accident conditions 500 GeV / beam 9 MW / beam Typical accidents: – Beam1 AND beam2 hit thick target at IP-14 m Weakness cavern-pacman interface? – Beam1 AND beam2 hit thick target at IP-9 m Pacman is sufficiently thick? Weakness in penetration. – Beam1 hits tungsten mask at IP-3 m (unsteered) SiD is sufficiently shielded? Beam aborted after one train = up to 3.6 MJ 12MSL - SLAC

13 20 R.L. Cu target in IP-14 m. Pacman size. Smaller pacmanLarger pacman

MSL - SLAC14 20 R.L. Cu target in IP-14 m. Small pacman. µSv/1_train Dose limits Maximum dose - The maximum integrated dose per event is ~100 µSv << 30 mSv - The corresponding peak dose rate is 1800 mSv/h >> 250 mSv/h 9 MW

MSL - SLAC15 20 R.L. Cu target in IP-14 m. Large pacman. µSv/1_train Dose limits Maximum dose - The maximum integrated dose per event is ~8 µSv << 30 mSv - The corresponding peak dose rate is ~140 mSv/h < 250 mSv/h 9 MW

MSL - SLAC16 20 R.L. Cu target in IP-9 m. Small pacman. + µSv/event Beam 2 Beam 1 BEAM PLANE

MSL - SLAC17 20 R.L. Cu target in IP-9 m. Small pacman. 9 MW BEAM PLANEPENETRATION PLANE 9 MW µSv/event µSv/event mSv/h

MSL - SLAC18 20 R.L. Cu target in IP-9 m. Large pacman. 9 MW BEAM PLANEPENETRATION PLANE 9 MW µSv/event - 10 µSv/event mSv/h

MSL - SLAC R.L. Cu target in IP-9 m. Small pacman. BOTTOM VIEW AT 100 CM HEIGTH (FROM FLOOR) 9 MW ~ 30 µSv/event ~ 540 mSv/h 19 Scale is different from that of elevation plots !! µSv/2_train

MSL - SLAC R.L. Cu target in IP-9 m. Large pacman. BOTTOM VIEW AT 100 CM HEIGTH (FROM FLOOR) 9 MW ~ 10 µSv/event ~ 180 mSv/h 20 µSv/2_trains

MSL - SLAC21 Beam 1 hits tungsten mask at IP-3 m ~ 100 /event ~ 1800 mSv/h µSv/1_train 9 MW The spaces between the door plates are empty in the model, but in the real detector they will be partially filled

MSL - SLAC22 Ongoing studies 1.Better resolution: Customized biasing + weight windows 2.Mis-steering studies 3.Analysis of other possible weakness 4. …

Provisional conclusions Small pacman and pacman-cavern interface are sufficient in terms of dose per event. However, the dose rates for the small pacman are very high: – Proven mechanisms should be installed to: avoid these accidents to occur shut off beam after 1 train (200 mS) – Possible Debates The large pacman complies with all criteria. The penetrations in the pacman don’t require local shielding. The shielding of the detector may be insufficient to comply with dose rate limit. Exclusion area? More studies ongoing (mis-steering…)