Amaldi 9 Cardiff University 10-15 July 2011 Parameter estimation for LISA Pathfinder Giuseppe Congedo University of Trento for the LTPDA team.

Slides:



Advertisements
Similar presentations
1 Regression as Moment Structure. 2 Regression Equation Y =  X + v Observable Variables Y z = X Moment matrix  YY  YX  =  YX  XX Moment structure.
Advertisements

S3/S4 BBH report Thomas Cokelaer LSC Meeting, Boston, 3-4 June 2006.
Uncertainty Quantification & the PSUADE Software
Hubert HalloinScientific Committee 2013 WP Interface I3(APC/IPGP) : Fundamental Physics and Geophysics in Space Introduction and context  Fundamental.
PhD oral defense 26th March 2012 Spacetime metrology with LISA Pathfinder Giuseppe Congedo Advisors:Prof. Stefano Vitale Dr. Mauro Hueller.
Use of Kalman filters in time and frequency analysis John Davis 1st May 2011.
Robust control Saba Rezvanian Fall-Winter 88.
Robot Localization Using Bayesian Methods
GoldSim 2006 User Conference Slide 1 Vancouver, B.C. The Submodel Element.
Collaboration FST-ULCO 1. Context and objective of the work  Water level : ECEF Localization of the water surface in order to get a referenced water.
9th LISA Symposium Paris, 22/05/2012 Optimization of the system calibration for LISA Pathfinder Giuseppe Congedo (for the LTPDA team)
University of Colorado Boulder ASEN 5070 Statistical Orbit determination I Fall 2012 Professor George H. Born Professor Jeffrey S. Parker Lecture 8: Stat.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft NDACC H2O workshop, Bern, July 2006 Water vapour profiles by ground-based FTIR Spectroscopy:
B. Moetakef-Imani, N.Z.Yussefian 10 July 2009 Aaron Boyd October 28, 2009.
PROVIDING DISTRIBUTED FORECASTS OF PRECIPITATION USING A STATISTICAL NOWCAST SCHEME Neil I. Fox and Chris K. Wikle University of Missouri- Columbia.
Image processing. Image operations Operations on an image –Linear filtering –Non-linear filtering –Transformations –Noise removal –Segmentation.
Louis J. Rubbo Neil Cornish and Olivier Poujade. The LISA Simulator Capabilities –Valid for an arbitrary gravitational wave at any frequency in the LISA.
Course AE4-T40 Lecture 5: Control Apllication
1 Status of Power-Flux * Search for Continuous-Wave Sources Dave Chin, Vladimir Dergachev, Keith Riles (University of Michigan) LIGO Scientific Collaboration.
A Design Method for MIMO Radar Frequency Hopping Codes Chun-Yang Chen and P. P. Vaidyanathan California Institute of Technology Electrical Engineering/DSP.
CH 1 Introduction Prof. Ming-Shaung Ju Dept. of Mechanical Engineering NCKU.
Colorado Center for Astrodynamics Research The University of Colorado STATISTICAL ORBIT DETERMINATION Project Report Unscented kalman Filter Information.
Interferometer Control Matt Evans …talk mostly taken from…
New data analysis for AURIGA Lucio Baggio Italy, INFN and University of Trento AURIGA.
Inertial Sensor and Its Application for Space Fundamental Experiments Ze-Bing Zhou ( 周泽兵 ), Jun Luo ( 罗俊 ) Center for Gravitational.
Kalman Filter (Thu) Joon Shik Kim Computational Models of Intelligence.
Assimilation of HF Radar Data into Coastal Wave Models NERC-funded PhD work also supervised by Clive W Anderson (University of Sheffield) Judith Wolf (Proudman.
Dynamics Modeling and First Design of Drag-Free Controller for ASTROD I Hongyin Li, W.-T. Ni Purple Mountain Observatory, Chinese Academy of Sciences S.
A. Betâmio de Almeida Assessing Modelling Uncertainty A. Betâmio de Almeida Instituto Superior Técnico November 2004 Zaragoza, Spain 4th IMPACT Workshop.
John W. Conklin, 9 th International LISA Symposium, Paris, 23 May Estimation of the LISA TM-to-release tip adhesion force during dynamic separation.
Institute of Flight Mechanics and Control Barcelona, LISA7 Symposium, June 17th 2008 IFR – University of Stuttgart LISA Pathfinder.
Uncertainty issues in Micro/Nano Manipulation by Parallel Manipulator
CHEE825/435 - Fall 2005J. McLellan1 Dynamic Experiments Maximizing the Information Content for Control Applications.
Progress in identification of damping: Energy-based method with incomplete and noisy data Marco Prandina University of Liverpool.
PeTeR: a hardware simulator for LISA PF TM-GRS system 23/05/ th LISA Symposium May 2012, BnF Paris L. Marconi and R. Stanga Università degli.
1SBPI 16/06/2009 Heterodyne detection with LISA for gravitational waves parameters estimation Nicolas Douillet.
The Analysis of Binary Inspiral Signals in LIGO Data Jun-Qi Guo Sept.25, 2007 Department of Physics and Astronomy The University of Mississippi LIGO Scientific.
MSC - 18 Oct 071 LOW FREQUENCY SEISMIC NOISE: LOCKING AND SENSITIVITY ISSUE Paolo Ruggi noise meeting.
Lecture 25: Implementation Complicating factors Control design without a model Implementation of control algorithms ME 431, Lecture 25.
Monte-Carlo based Expertise A powerful Tool for System Evaluation & Optimization  Introduction  Features  System Performance.
B. Caron, G. Balik, L. Brunetti LAViSta Team LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France & SYMME-POLYTECH Annecy-Chambéry, Université de Savoie,
2° ILD Workshop Cambridge 11-14/09/08 The sensitivity of the International Linear Collider to the     in the di-muon final state Nicola D’Ascenzo University.
Statistics Presentation Ch En 475 Unit Operations.
Project-Final Presentation Blind Dereverberation Algorithm for Speech Signals Based on Multi-channel Linear Prediction Supervisor: Alexander Bertrand Authors:
Data Analysis Algorithm for GRB triggered Burst Search Soumya D. Mohanty Center for Gravitational Wave Astronomy University of Texas at Brownsville On.
S.Klimenko, March 2003, LSC Burst Analysis in Wavelet Domain for multiple interferometers LIGO-G Z Sergey Klimenko University of Florida l Analysis.
Nonlinear regression Review of Linear Regression.
University of Colorado Boulder ASEN 5070 Statistical Orbit determination I Fall 2012 Professor George H. Born Professor Jeffrey S. Parker Lecture 9: Least.
Penn State, 20 th -24 th July TH INTERNATIONAL LISA S YMPOSIUM D. Bortoluzzi, M. Da Lio, S. Vitale1 LTP dynamics and control D. Bortoluzzi, M. Da.
Matrix Models for Population Management & Conservation March 2014 Lecture 10 Uncertainty, Process Variance, and Retrospective Perturbation Analysis.
Detector Characterisation and Optimisation David Robertson University of Glasgow.
Comparison of filters for burst detection M.-A. Bizouard on behalf of the LAL-Orsay group GWDAW 7 th IIAS-Kyoto 2002/12/19.
LTP Barcelona_26_27_06_2007 S. Vitale1 Master Plan Analyses DA#6.
ESA Living Planet - Begen – June B. Christophe, J-P. Marque, B. Foulon ESA LIVING PLANET SYMPOSIUM June 28 th -July 2 nd 2010 Bergen (Norway)
G O D D A R D S P A C E F L I G H T C E N T E R 1 Status of LISA Jordan Camp LISA Deputy Project Scientist NASA / Goddard Space Flight Center Jan. 19,
The first AURIGA-TAMA joint analysis proposal BAGGIO Lucio ICRR, University of Tokyo A Memorandum of Understanding between the AURIGA experiment and the.
Noise propagation issues in complex power cables for HEP detectors M. Iglesias, I. Echeverria,F. Arteche 12 th Meeting of the Spanish Network for future.
Probabilistic Slope Stability Analysis with the
Labwork 3.
Optimisation of Radio Spectrum Usage
Review production of 30min calibrated SFTs well under way (see talks by V.Dergachev., X. Siemens in ASIS/DetChar). Also expect calibrated h(t) in the next.
MESB374 System Modeling and Analysis
A 2 veto for Continuous Wave Searches
TEST OF GOCE EGG DATA FOR SPACECRAFT POSITIONING
Update on Removing Forced Oscillation Bias from the Mode Meter
LISA Data Analysis & Sources
Solving an estimation problem
Uses of filters To remove unwanted components in a signal
Update on Removing Forced Oscillation Bias from the Mode Meter
Talk prepared by Stefan Hild AEI Hannover for the GEO-team
Presentation transcript:

Amaldi 9 Cardiff University July 2011 Parameter estimation for LISA Pathfinder Giuseppe Congedo University of Trento for the LTPDA team

Outline of the talk  LISA Pathfinder concept & system identification  Parameter estimation I.Monte Carlo validation II.Robustness to non-standard scenarios  Optimal design of experiments  Impact of parameter estimation on residual force noise 14/07/2011Giuseppe Congedo - Amaldi 92

LISA Pathfinder concept 14/07/2011Giuseppe Congedo - Amaldi 93 LISA one-way Doppler link LISA Pathfinder  study the link in terms of residual force disturbances  prove free fall within 3x m s -2 Hz -1/2 around 1 mHz  measure and characterize the residual force noise M. Hewitson talk on “The LISA Pathfinder Mission”

Controlled dynamics 14/07/2011Giuseppe Congedo - Amaldi 94 LISA Pathfinder measurement scheme  TM 1 in free fall along x  SC follows TM 1, through µN-thruster actuation  TM 2 follows TM 1, through electrostatic actuation TM 1 TM 2 SC x electrostatic actuators o 12 o1o1 µN-thrusters o 1 = IFO(x 1 ) o 12 = IFO(x 12 )

TM 1 TM 2 Control scheme & system parameters 14/07/2011Giuseppe Congedo - Amaldi 95 IFO x1x1 x 12 o1o1 o 12 S 21 C df A df Δt 1 C sus A sus Δt 2 ω12ω12 ω22ω22  ω 1 2, ω 12 2 =ω 2 2 -ω 1 2 : spring-like couplings between the SC and each TM, [~-1x10 -6 s -2 ]  S 21 : sensing cross-talk between o 1 and o 12, [~ 1x10 -4 ]  A df, Δt 1 : actuation gain and delay for the application of thruster forces [~ 1, < 1 s]  A sus, Δt 2 : actuation gain and delay for the application of electrostatic suspension forces [~ 1, < 1 s]

System identification experiments  LISA Pathfinder is a multi-input/multi- output dynamical system  We inject frequency sweeps spanning 0.1 – 50 mHz 14/07/2011Giuseppe Congedo - Amaldi 96 Exp. 1 o i,1 TM 1 TM 2 IFO x1x1 x 12 o1o1 o 12 S 21 C df A df Δt 1 C sus A sus Δt 2 ω12ω12 ω 12 2 Exp. 2 o i,12

Parameter estimation 14/07/2011Giuseppe Congedo - Amaldi 97 IFO noise data Whitening filters IFO sys. id. exps. data Model templates Whitened data Whitened templates System parameters M. Nofrarias poster on “Parameter estimation in LISA Pathfinder operational exercises” 3 methods: linear with SVD, non-linear, MCMC

Monte Carlo validation: parameter statistics 14/07/2011Giuseppe Congedo - Amaldi 98  Estimation is unbiased for all 7 parameters  Uncertainties are in agreement with Fisher matrix Mean best-fit True value Standard deviation of the mean

Parameter correlation 14/07/2011Giuseppe Congedo - Amaldi 99

Parameter correlation 14/07/2011Giuseppe Congedo - Amaldi 910

Monte Carlo validation: loglikelihood chains 14/07/2011Giuseppe Congedo - Amaldi iterations altogether Noise perturbes the chains a lot

Monte Carlo validation: loglikelihood statistics 14/07/2011Giuseppe Congedo - Amaldi 912 Statistical removal of deterministic part

Robustness to the initial guess: performance 14/07/2011Giuseppe Congedo - Amaldi 913  Strongly uncalibrated system, low thruster performance, unexpected force couplings  Estimation was able to reach the true values within ~1 sigma, from sigmas

Robustness to the initial guess: analysis of residuals 14/07/2011Giuseppe Congedo - Amaldi 914

Robustness to glitches 14/07/2011Giuseppe Congedo - Amaldi 915 excess noise at high frequency  Failures in the electronics, nonlinearities, unexpected phenomena, etc.  Simulation of SG glitches  We are still able to recover the true parameters with “some care”

Optimal design of LISA Pathfinder experiments 14/07/2011Giuseppe Congedo - Amaldi 916 System parameters (ω 1, ω 12, S 21,...) Injection parameters (frequencies and amplitudes) Results:  Improvement of up to 1 order of magnitude in parameter precision  Minimezed parameter correlations  Fewer sine frequencies to inject

Estimation of residual force noise 14/07/2011Giuseppe Congedo - Amaldi 917 factor 4 improvement around 0.4 mHz factor 2 improvement around 50 mHz

Final comments  Monte Carlo simulation has proven self-consistency  Robust with respect to the initial guess and glitches  Applied to operational exercises with a realistic black-box ESA simulator  Experiments can be optimized to get better precision in all parameters  Parameter estimation is mandatory to avoid systematics in the assessment of residual force noise for all space-based GW missions 14/07/2011Giuseppe Congedo - Amaldi 918

Thanks for your attention! 14/07/2011Giuseppe Congedo - Amaldi 919

Additional slides... 14/07/2011Giuseppe Congedo - Amaldi 920

Equation of motion 14/07/2011Giuseppe Congedo - Amaldi 921 total residual force noise Input control forces LISA Pathfinder eom in freq. domain sensing forces dynamics readoutcoord.s inputs controller... for system identification... for estimation of out-of-loop residual force noise