Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 1 Impact of Ultra Wide-Band Antennas on Communications in.

Slides:



Advertisements
Similar presentations
How many antennas does it take to get wireless access? -The story of MIMO n Benjamin Friedlander n Department of Electrical Engineering n University of.
Advertisements

A Framework for MIMO Operation over mmWave Links
mmWave MIMO Link Budget Estimation for Indoor Environment
Mohammad Alkhodary Ali Assaihati EE 578 Simulation Communication Systems Case Study (101) Phase III KFUPM Ultra WidebandUltra WidebandTransmitter.
Mohammad Alkhodary Ali Assaihati Supervised by: Dr. Samir Alghadhban EE 578 Simulation Communication Systems Case Study (101) Final.
Doc.: IEEE /0630r0 Submission May 2015 Intel CorporationSlide 1 Verification of IEEE ad Channel Model for Enterprise Cubical Environment.
MIMO RAKE Antenna Technology for Advanced MIMO Wireless WAN and LAN Pr. Jean-Claude Ducasse Hypercable Telecommunications.
Submission doc.: IEEE /0808 July 2015 Songnam Hong, EricssonSlide 1 Frequency-independent Digital Precoder for Hybrid MIMO Precoding Date:
Phase Tracking During VHT-LTF
MULTIPLE INPUT MULTIPLE OUTPUT SYSTEMS (MIMO)
Doc.: IEEE c Submission January 2006 Slide 1 Hiroyo Ogawa, NICT Project: IEEE P Working Group for Wireless Personal Area Networks.
Lecture 9,10: Beam forming Transmit diversity Aliazam Abbasfar.
Doc.: IEEE /0493r1 Submission May 2010 Changsoon Choi, IHP microelectronicsSlide 1 Beamforming training for IEEE ad Date: Authors:
Doc.: IEEE /180r0 Submission March 2002 Monisha Ghosh, et al., Philips Slide 1 On The Use Of Multiple Antennae For Monisha Ghosh, Xuemei.
Submission doc.: IEEE /0627r0 May 2015 Hakan Persson, EricssonSlide 1 Beam Selection for Hybrid MIMO Precoding Date: Authors:
Designing and Manufacturing Microstrip Antenna for Wireless Communication at 2.4 GHz Monday December 27, 2010 Presented for Undergraduate Thesis ByRachmansyah.
Doc.: IEEE d_Intra-Device_Propagation_Measuremets Submission March 2015 Slide 1 Project: IEEE P Working Group for Wireless Personal.
MIMO Wireless Systems Using Antenna Pattern Diversity Liang Dong Department of Electrical and Computer Engineering The University of Texas at Austin.
Doc.: IEEE /0336r0 Submission March 2009 Alexander Maltsev, Intel CorporationSlide 1 Conference Room Channel Model for 60 GHz WLAN Systems - Summary.
Doc.: IEEE Submission, Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [The Usage of.
Slide 1 Mohamed El-Hadidy Duisburg/UWB weekly Antenna Fundamentals & UWB Antenna M.Sc. Eng. Mohamed El-Hadidy Duisburg-Essen Universität –
Submission doc.: IEEE 11-14/0652r1 Next Generation ad Slide 1 May 2014 Gal/Alecs Wilocity/Qualcomm Authors: NameAffiliationAddressPhone Alecsander.
Pavel Miskovsky Ph.D. candidate Sept Telecommunications Technological Center of Catalonia (CTTC)
March 2004 Communications Research Laboratory Slide 1 doc.: IEEE a Submission Project: IEEE P Working Group for Wireless Personal.
Doc.: IEEE /0431r0 Submission April 2009 Alexander Maltsev, Intel CorporationSlide 1 Polarization Model for 60 GHz Date: Authors:
Doc.: IEEE c Submission March 2006 Slide 1 Chang-Soon Choi, NICT Project: IEEE P Working Group for Wireless Personal Area Networks.
Doc.: IEEE /0909r0 Submission July 2012 Jong S. Baek, AlereonSlide 1 Analysis, simulation and resultant data from a 6-9GHz OFDM MAC/PHY Date:
Doc.: d Stochastic Channel Model for Wireless Data Center Submission Match 2015 Bile Peng (TU Braunschweig). Slide 1 Project: IEEE P
UNIVERSITY OF PATRAS ELECTRICAL & COMPUTER ENG. DEPT. LABORATORY OF ELECTROMAGNETICS A Hybrid Electromagnetic-Discrete Multipath Model for Diversity Performance.
Submission doc.: IEEE /1094 Overview and discussion about the next steps for ay channel modeling Date: Authors: Slide 1.
May 2006 Zhiguo Lai, University of Massachusetts - Amherst Slide 1 doc.: IEEE c Submission Project: IEEE P Working Group for.
Doc.: IEEE Submission March 2008 Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [PHY.
INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES 1 UMR 6164 A reciprocal MIMO-UWB Radio Channel Deterministic Modeling Framework CROWNCOM
Doc.: IEEE /0133r0 Submission January 2010 Alexander Maltsev, Intel TGad Channel Model Update Authors: Date:
Doc.: IEEE /1229r1 Submission November 2009 Alexander Maltsev, IntelSlide 1 Application of 60 GHz Channel Models for Comparison of TGad Proposals.
Doc.: IEEE /0632r0 Submission May 2015 Intel CorporationSlide 1 Experimental Measurements for Short Range LOS SU-MIMO Date: Authors:
Doc.: IEEE /145r0 Submission Mar 2003 Masa Horie, TRDA/Taiyo YudenSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
Lecture 24-27: Ultra Wideband Communications Aliazam Abbasfar.
Doc.: IEEE /0112r2 Submission January, 2010 Hirokazu Sawada, Tohoku UniversitySlide 1 [Intra-cluster response model and parameter for channel.
Interdigital Communications Submission doc.: IEEE /1333r1 November 2015 Feasibility of SU-MIMO under Array Alignment Method Date: Slide.
Doc.: IEEE /0015r1 Submission Large-Scale Characteristics of 45 GHz Based on Channel Measurement Authors/contributors: Date: Presenter:
InterDigital, Inc. Submission doc.: IEEE /0911r1 July 2016 Link Level Performance Comparisons of Open Loop, Closed Loop and Antenna Selection.
Doc.: IEEE /1209r0 Submission Hotel lobby SU-MIMO channel modeling: 2x2 golden set generation Date: September 2016 Alexander Maltsev,
Doc.: IEEE /0632r1 Submission May 2016 Intel CorporationSlide 1 Performance Analysis of Robust Transmission Modes for MIMO in 11ay Date:
EE359 – Lecture 14 Outline Practical Issues in Adaptive Modulation
MULTIPLE INPUT MULTIPLE OUTPUT SYSTEMS (MIMO)
Design Regular Fractal Slot-antennas for Ultra-wideband Applications
Reconfigurable Antenna by Ahmed Alawneh, Mohammed Mansour and Alaa Rawajbeh The supervisor: Dr. Allam Mousa   2014 An-Najah National University.
Closed Loop SU-MIMO Performance with Quantized Feedback
GI Overhead/Performance Impact on Open-Loop SU-MIMO
Antenna selection and RF processing for MIMO systems
Low-profile corrugated feeder horn antenna (Bull's Eye)
Small-Scale Characteristics of 45 GHz Based on Channel Measurement
60 GHz Cubicle Wall Reflectivity
A Framework for MIMO Operation over mmWave Links
Validation of n Channel Models
Investigation on One- and Two-Stream BCH MIMO Schemes
Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [The Usage of Polarized Antenna System] Date.
Further Discussion on Beam Tracking for ay
Large-Scale Characteristics of 45 GHz Based on Channel Measurement
Mini SAS HD Connector Simulation
MIMO (Multiple Input Multiple Output)
A Compact Patch Antenna for Ultrawideband Application
Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Presentation on Radio Channel Model for Indoor UWB WPAN.
Channel Modeling with PAA Orientations
doc.: IEEE <doc#>
doc.: IEEE <doc#>
Chenhui Zheng/Communication Laboratory
Coordinated Spatial Reuse Performance Analysis
Coordinated Spatial Reuse Performance Analysis
Presentation transcript:

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 1 Impact of Ultra Wide-Band Antennas on Communications in a Spatial Channel Mohamed El-Hadidy & Thomas Kaiser University of Duisburg-Essen Faculty of Engineering, Department of Communication Systems, Bismarckstr. 81, Duisburg, Germany

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 2 Mathematical frame of UWB system model How the whole chain of the UWB transmisson modeled, including the antennas‘ effects? Omni-directional or Directionl antennas? Impact of antennas on the spatial channel and some simulation results. Future work Outline

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 3 UWB System Model

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 4 UWB System Model

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 5 UWB System Model

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 6 UWB System Model

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Complete UWB Chain TxRx Ant_TxAnt_Rx Channel IEEE Ray Tracing Directional Omni-Directional

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Complete UWB Chain TxRx Ant_TxAnt_Rx Channel **

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 9 First Channel Impulse Response of the Environment

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 IEEE Channel Model

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 11 Ray-tracing Channel Model x10 -7

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Discrete Channel Impulse Response

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 13 Second Antenna Impulse Response &

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS Radiation Pattern of Horn Antenna Freq = 6.5 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS  Gain in dB from Radiation Pattern Freq = 3 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS  Gain in dB from Radiation Pattern Freq = 3.5 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS  Gain in dB from Radiation Pattern Freq = 4 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS  Gain in dB from Radiation Pattern Freq = 4.5 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS  Gain in dB from Radiation Pattern Freq = 5 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS  Gain in dB from Radiation Pattern Freq = 5.5 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS  Gain in dB from Radiation Pattern Freq = 6 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS  Gain in dB from Radiation Pattern Freq = 6.5 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS  Gain in dB from Radiation Pattern Freq = 7 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS  Gain in dB from Radiation Pattern Freq = 7.5 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS  Gain in dB from Radiation Pattern Freq = 8 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS  Gain in dB from Radiation Pattern Freq = 8.5 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS  Gain in dB from Radiation Pattern Freq = 9 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS  Gain in dB from Radiation Pattern Freq = 9.5 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 HFSS  Gain in dB from Radiation Pattern Freq = 10 GHz

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 30 Bowtie Antenna Antenna radiation pattern

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 31 Step Response of Bowtie Antenna

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 32 Overall Channel Impulse Response Directional Ideal Omni- Directional Rotating Tx by 90° Rotating Tx & Rx by 90°

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 33 Rotation of Tx Antennas in SISO System

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 34 Omni-Directional vs. Directional Antennas in SISO & MISO

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 35 Future Work Investigating the diversity added to the UWB MIMO system using the antennas’ impact (e.g. using different types of antennas, rotating the antennas, etc.) Investigating the coupling effect appearing among the neighbouring antennas either at transmit or receive sides for UWB MIMO system. Embedding the whole antenna properties which is angular and frequency dependent into the system like polarization and input impedance, etc.

Mohamed El-Hadidy and Thomas Kaiser University of Duisburg-Essen Crowncom, Juni 10, 2006 Slide 36