The Global Star Formation Laws in Galaxies: Recent Updates Yu Gao Purple Mountain Observatory Chinese Academy of Sciences May 15, th sino-french.

Slides:



Advertisements
Similar presentations
Low-J CO Line Emission at High Redshift with ALMA Band 2 Leslie Hunt INAF-Osservatorio Astrofisico di Arcetri Firenze, Italy.
Advertisements

Dense Molecular Gas in Galaxies Near and Far Yu GAO Purple Mountain Observatory, Nanjing Chinese Academy of Sciences.
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
Ming Zhu (JAC/NRC) P. P. Papadopoulos (Argelander Institute for Astronomy, Germany) Yu Gao (Purple Mountain Observatory, China) Ernie R. Seaquist (U. of.
Luminous Infrared Galaxies with the Submillimeter Array: Probing the Extremes of Star Formation Chris Wilson (McMaster), Glen Petitpas, Alison Peck, Melanie.
The Global Star Formation Law in Dense Molecular Gas Yu Gao Purple Mountain Observatory Chinese Academy of Sciences Sept. 7, (IAUS 284)
The Two Tightest Correlations: FIR-RC and FIR-HCN Yu GAO Purple Mountain Observatory, Nanjing Chinese Academy of Sciences.
From GMC-SNR interaction to gas-rich galaxy-galaxy merging Yu GAO Purple Mountain Observatory, Nanjing, China Chinese Academy of Sciences.
A CO(3-2) Survey of Warm Molecular Gas in Nearby Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger.
Connecting Dense Gas Tracers of Star Formation in our Galaxy to High-z Star Formation Jingwen Wu & Neal J. Evans II (Univ. of Texas at Austin) ; Yu Gao.
The Prospect of Observing the KS Relation at High-z Desika Narayanan Harvard-Smithsonian CfA Chris HaywardT.J. CoxLars Hernquist Harvard Carnegie.
Molecular Gas, Dense Molecular Gas and the Star Formation Rate in Galaxies (near and far) P. Solomon Molecular Gas Mass as traced by CO emission and the.
Extragalactic Star Formation into the ALMA Era (Beyond CO)* Yu GAO 高 煜 Purple Mountain Observatory, Nanjing Chinese Academy of Sciences *Dedicated to the.
The Kennicutt-Schmidt Star Formation Relation at z~2 Desika Narayanan Harvard-Smithsonian CfA Chris HaywardT.J. CoxLars Hernquist Harvard Carnegie.
Turbulence, Feedback, and Slow Star Formation Mark Krumholz Princeton University Hubble Fellows Symposium, April 21, 2006 Collaborators: Rob Crockett (Princeton),
Excitation Mechanisms: The Irradiated and Stirred ISM Marco Spaans (Groningen) Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem.
Der Paul van der Werf Leiden Observatory HerCULES Lorentz Centre February 28, 2012.
(Cold) dust and gas in high-z AGNs: a prelude to Herschel and ALMA Roberto Maiolino Osservatorio Astronomico di Roma.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
 High luminosity from the galactic central region L bol ~ erg/s  High X-ray luminosity  Supermassive black hole at the center of the galaxy.
Evolution of Extreme Starbursts & The Star Formation Law Yu Gao Purple Mountain Observatory, CAS.
Galactic and Extragalactic star formation M.Walmsley (Arcetri Observatory)
HST ACSCO on ACS in EGS at z=1.12 Molecular Gas in Star Forming Galaxies at z=1-3 Linda Tacconi, MPE Garching & Santa Cruz Galaxy Evolution Workshop.
ULTRALUMINOUS INFRARED GALAXIES: 2D KINEMATICS AND STAR FORMATION L. COLINA, IEM/CSIC S. ARRIBAS, STSCI & CSIC D. CLEMENTS, IMPERIAL COLLEGE A. MONREAL,
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Der Paul van der Werf & Leonie Snijders Leiden Observatory The anatomy of starburst galaxies: sub-arcsecond mid-infrared observations Lijiang August 15,
The SED of the nearby, HI-massive, LIRG HIZOA J : from the NIR to the radio domain Renée C. Kraan-Korteweg Astronomy Department Centre for Astrophysics.
Molecular Gas and Star Formation in Nearby Galaxies Tony Wong Bolton Fellow Australia Telescope National Facility.
Lighting the dark molecular gas using the MIR H 2 rotational lines Aditya Togi Advisor: JD Smith University of Toledo 19 th June
Der Paul van der Werf Leiden Observatory H 2 emission as a diagnostic of physical processes in star forming galaxies Paris October 1, 1999.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
Star Formation: Near and Far Neal J. Evans II with Rob Kennicutt.
Interstellar Medium and Star Formation in the Andromeda Galaxy Andreas Schruba California Institute of Technology Adam Leroy, Karin Sandstrom, Fabian Walter,
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
Chris Wilson McMaster University - C. Wilson, F. Israel, S. Serjeant (coordinators) - B. Warren, E. Sinukoff, D. Attewell; C. Baker, J. Newton, T. Parkin,
Turbulence, Feedback, and Slow Star Formation Mark Krumholz Princeton University / UC Santa Cruz Gas Accretion and Star Formation in Galaxies MPA/ESO/MPE/USM.
Frayer (1) Redshifted Molecular Gas – Evolution of Galaxies David T. Frayer (NRAO) ALMA-Band ALMA Band-2 (68-90 GHz) is a crucial missing band for.
Atomic and Molecular Gas in Galaxies Mark Krumholz UC Santa Cruz The EVLA: Galaxies Through Cosmic Time December 18, 2008 Collaborators: Sara Ellison (U.
Molecules in ULIRGS, and high density tracers SSAS-FEE Lecture 6 Françoise COMBES.
The Irradiated and Stirred ISM of Active Galaxies Marco Spaans, Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem Baan (ASTRON),
1 Lessons from cosmic history Star formation laws and their role in galaxy evolution R. Feldmann UC Berkeley see Feldmann 2013, arXiv:
Molecular Survival in Planetary Nebulae: Seeding the Chemistry of Diffuse Clouds? Jessica L. Dodd Lindsay Zack Nick Woolf Emily Tenenbaum Lucy M. Ziurys.
R. Meijerink, P. van der Werf, F. Israel and the HEXGAL team HERSCHEL OBSERVATIONS OF Edo Loenen, Leiden Observatory EXTRA GALACTIC STAR FORMATIONMESSIER.
SMA [CII] 158um 334GHz, 20hrs BRI z=4.7 Quasar-SMG pair Both HyLIRG Both detected in CO Iono ea 2007 Omont ea ”4” HST 814 Hu ea 96.
D. B. Sanders Institute for Astronomy, University of Hawaii Gas-Rich Mergers and the origin of nuclear starbursts and AGN The Dusty and Molecular Universe:
Molecular Gas (Excitation) at High Redshift Fabian Walter Max Planck Institute for Astronomy Heidelberg Fabian Walter Max Planck Institute for Astronomy.
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
Molecular Gas in Low-Redshift Radio Galaxies & Quasi-Stellar Objects Detected by IRAS Aaron Evans (Stony Brook) J. Mazzarella (IPAC) J. Surace (SSC) D.
Hunt for Molecules in Local Universe Galaxies Santiago GARCIA-BURILLO Observatorio Astronómico Nacional (OAN)-Spain Hunt for Molecules, November 19-20,
Warm Molecular Gas in Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger (IRAM) Dinh-Van-Trung (ASIAA)
Star Formation in Cosmological Simulations: the Molecular Gas Connection Kostas Tassis Jet Propulsion Laboratory California Institute of Technology.
Molecular clouds in the center of M81 Viviana Casasola Observatoire de Paris-LERMA & Università di Padova, Dipartimento di Astronomia Scuola Nazionale.
Extragalactic Absorption – The Promise of the EVLA Karl M. Menten Max-Planck-Institute for Radio Astronomy Christian Henkel (MPIfR), with Christian Henkel.
ALMA: Imaging the cold Universe Great observatories May 2006 C. Carilli (NRAO) National Research Council Canada.
Modes of Star Formation along the Hubble Sequence … and beyond Richard de Grijs University of Sheffield, UK Terschelling, 7 July 2005.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Massive Star Formation under Different Z & Galactic Environment Rosie Chen (University of Virginia) Remy Indebetouw, You-Hua Chu, Robert Gruendl, Gerard.
HST HII regions & optical light Eva Schinnerer Max Planck Institute for Astronomy molecular gas (PAWS) 1 kpc Star Formation and ISM in Nearby Galaxies:
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
XGAL 2016, Charlottesville, April 5 th 2016 Sergio Martín Ruiz Joint ALMA Office The unbearable opaqueness of obscured nuclei.
Purple Mountain Obs. CAS CHINA 2005 LiJiang International Starburst Workshop The Dense Molecular Connection Between IR and RC Emission In Galaxies Fan.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
Studying ISM and star formation in M33 with ALMA Sachiko Onodera & NRO MAGiC Team: (M33 All-disk Survey of Giant Molecular Clouds) N. Kuno 1, T. Tosaki.
The Secret Lives of Molecular Clouds Mark Krumholz Princeton University Hubble Fellows Symposium March , 2008 Collaborators: Tom Gardiner (Cray.
What Determines Star Formation Rates?
What is EVLA? Build on existing infrastructure, replace all electronics (correlator, Rx, IF, M/C) => multiply ten-fold the VLA’s observational capabilities.
Dense gas history of the Universe  Tracing the fuel for galaxy formation over cosmic time SF Law SFR Millennium Simulations, Obreschkow & Rawlings 2009;
KENNICUTT-SCHMIDT RELATION VARIETY AND STAR-FORMING CLOUD FRACTION
Observing Molecules in the EoR
Presentation transcript:

The Global Star Formation Laws in Galaxies: Recent Updates Yu Gao Purple Mountain Observatory Chinese Academy of Sciences May 15, th sino-french

Outline of this talk What are the star formation (SF) recipes? SFR-gas (HI, CO) scaling laws: Kennicutt - Schmidt law, SF laws in other forms Why do we need a SFR-dense gas law A linear FIR(SFR)--HCN (dense gas tracer) relation for all star-forming systems (GMCs-->high-z): SF law in dense gas Major issues and debates (CS surveys) Conclusions

Star formation laws Schmidt (1959): SFR~density(HI)^n, n=1-3, mostly 2-3 in ISM of our Galaxy. Kennicutt (1989): Disk-average [SFR~ density(HI+H2)^n] n is not well constrained. ~1-3, wide spread. Kennicutt (1998): n=1.4 ? Total gas (HI + H2) vs. Dense gas Better SF law in dense gas? (Hubble law and H 0 analogy)

Hubble law

Kennicutt 1998 n=1.4

Normal disk spirals IR circumnuclear starbursts

SFR vs. M(H2): No Unique Slope:1, 1.4, 1.7? HI-dominated LSB galaxies HI ~ H2 H2-dominatedLIRGs/ULIRGs Gao & Solomon 2004b ApJExtragalactic SF=CO until 90’s

Bigiel’s SF thresholds may simply reflect the change of the dominant cold gas phase in galaxies from HI ->H2 & from H2->denseH2 Schruba+2011 ~linear in H2!

GMCs enbed in diffuse a tomic gas ( HI ), the gas reservoir for molecular clouds, and the supply for future star formation. PDRs

Stars are forming in giant molecular clouds (GMCs)

High Density Tracers Merging/interactions trigger gas infall to nuclear regions Nuclei of Galaxies should possess denser gas as GMCs have to survive to tidal forces (must be denser) Critical density: the radiating molecule (eg, CO) suffers collisions at the rate: n(H2) sigma v = A ( Einstein coefficient A ~ nu^3 mu^2 ) * High-J (>~3) levels of CO (nu ~ J) higher critical density to be excited (>10 5 cm -3 ) * & High dipole moment molecules HCN, HNC, HCO+, CS (mu ~ 30x > CO), etc.. * X factor ? CO-to-H2, HCN-to-DenseH2 conversions

Dense gas is the essential fuel for high mass star formation in galaxies HCN Surveys in 53 Galaxies: Gao & Solomon 2004a ApJS Far-IR, HCN, CO Correlations : Gao & Solomon 2004b ApJ

SFR Dense Molecular Gas

Baan, Henkel, Loenen Baan et al. (2008) Kohno 2007, et al. (2003) Imanishi (2006) Aalto et al. 2007, 2002, 1995 Solomon et al Nguyen et al Henkel et al Henkel, Baan, Mauersberger 1991 HCN,CS,HNC etc. in SF gals. Best case studies: Arp 220 & NGC 6240 (Greve )

Gao, Carilli, Solomon & Vanden Bout 2007 ApJ, 660, L93

Wu, Evans, Gao et al ApJL Fit to GMCs Fit to Galaxies Fit to both GMCs & Gals.. Wu+2010

CARMA+45m CO (Koda + 09) HST

Total useful on-source integration time >~110 hours. HCN spectra with S/N>3 (a channel width dV ~7 km/s). Typical rms ~1-2 mK at dV~20 km/s.

HCN contours are overlaid on the CO image

Correlations between 8um-HCN & 24um- HCN. The solid lines: fixed slope of 1. SFR HCN

Chen & Gao in prep. M33GMCs (Rosolowsky, Pineda & Gao 2011)

∑M dense vs. ∑ SFR Dense H2 show the best correlation with SFR (linear Liu & Gao 2011). Liu & Gao arXiv:

K-S SF Law in high-redshift galaxies K-S SF Law in high-redshift galaxies Daddi et al. 2010; Genzel+2010 CO->H2 conversion factor ?? α co (Msun (K km/s pc 2 ) -1 : 4.6 for local spirals 3.6 ± 0.8 for BzKs 0.8 for LIRGs/SMGs/QSOs Two major SF modes: 1. a long-lasting mode for disks (local spirals and BzKs) 2. a rapid starburst for LIRGs ULIRGs & SMGs/QSOs

Bi-modal SF laws in high-z gals (Daddi+2010; Genzel+2010) also exist in local gals

Juneau+2009; Narayanan+2008; Krumholz & Thompson 2007; Iono+2008; Mao+2010 SFR – CO & SFR -- HCN indexes

Dense gas over a range of 10^4-8 /cm^3

Concluding Remarks SF: quiescent (few Dense Cores=DCs), normal, active/burst modes (starbursts: active formation of DCs) DCs in Dense Molecular Gas Complexes  High Mass Stars/Clusters (SF in different environments: SMGs/hi-z QSOs; ULIRGs/Starbursts; Spirals; LSBs; DCs) SF thresholds: change of the dominant cold gas phase in galaxies from HI ->H2 & from H2->denseH2 (FIR-HCN, CS Linear Correlations) SFR ~ M(DenseH2): the total mass of dense molecular gas in galaxies & all star-forming systems (spanning 10 orders of mag.)? SFR-DenseGas: Counting DCs(=SF units) in Galaxies? Gao & Solomon: Dense H 2  DCs/StarsClusters

New Star Formation Law Dense Molecular Gas  High Mass Stars SFR ~ M(DENSE) ~ density of dense gas (e.g. gas density >~10^5 cc), linear HI  H 2  DENSE H 2  Stars Schmidt law : HI  Stars Kennicutt : HI + H 2  Stars Gao & Solomon: Dense H 2  Stars From Cores to High-z: Dense Gas  Massive SF