1 2+1 Flavor lattice QCD Simulation on K computer Y.Kuramashi U. of Tsukuba/RIKEN AICS August 2, Mainz.

Slides:



Advertisements
Similar presentations
1 Lattice QCD Activities at CCS Yoshinobu Kuramashi Center for Computational Sciences (CCS) University of Tsukuba.
Advertisements

Excited State Spectroscopy from Lattice QCD
1 Meson correlators of two-flavor QCD in the epsilon-regime Hidenori Fukaya (RIKEN) with S.Aoki, S.Hashimoto, T.Kaneko, H.Matsufuru, J.Noaki, K.Ogawa,
Resent BES Results on Scalar Mesons Zhipeng Zheng (Representing BES Collaboration) Institute of High Energy Physics, CAS GHP-2004, Oct. 25.
TQFT 2010T. Umeda (Hiroshima)1 Equation of State in 2+1 flavor QCD with improved Wilson quarks Takashi Umeda (Hiroshima Univ.) for WHOT-QCD Collaboration.
JPS autumn 2010T. Umeda (Hiroshima)1 ウィルソンクォークを用いた N f =2+1 QCD の状態方程式の研究 Takashi Umeda (Hiroshima Univ.) for WHOT-QCD Collaboration JPS meeting, Kyushu-koudai,
Quark-quark interaction in baryons from Nambu-Bethe-Salpeter amplitudes on lattice Hideaki Iida (Kyoto Univ.) in collaboration with Yoichi Ikeda (Tokyo.
Lattice QCD calculation of Nuclear Forces Noriyoshi ISHII (Univ. of Tsukuba) in collaboration with Sinya AOKI (Univ. of Tsukuba) Tetsuo HATSUDA (Univ.
Scadron70 page 1 Pattern of Light Scalar Mesons a 0 (1450) and K 0 *(1430) on the Lattice Tetraquark Mesonium – Sigma (600) on the Lattice Pattern of Scalar.
07/30/2007Lattice 2007 Sigma meson contribution in the  I=1/2 rule Takumi Doi (Univ. of Kentucky) In collaboration with T.Draper (Univ. of Kentucky) K.-F.Liu.
Lattice 07, Regensburg, 1 Magnetic Moment of Vector Mesons in Background Field Method Structure of vector mesons Background field method Some results x.
QUARKS, GLUONS AND NUCLEAR FORCES Paulo Bedaque University of Maryland, College Park.
Huey-Wen Lin — Parameter Tuning of Three-Flavor Dynamical Anisotropic Clover Action Huey-Wen Lin Robert G. Edwards Balint Joó Lattice.
1 Statistical Models and STAR’s Strange Data Sevil Salur Yale University for the STAR Collaboration.
K - pp studied with Coupled-channel Complex Scaling method Workshop on “Hadron and Nuclear Physics (HNP09)” Arata hall, Osaka univ., Ibaraki,
1 Heavy quark Potentials in Full QCD Lattice Simulations at Finite Temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
1 Thermodynamics of two-flavor lattice QCD with an improved Wilson quark action at non-zero temperature and density Yu Maezawa (Univ. of Tokyo) In collaboration.
Thermal phase transition of color superconductivity with Ginzburg-Landau effective action on the lattice M. Ohtani ( RIKEN ) with S. Digal (Univ. of Tokyo)
1 Multi-nucleon bound states in N f =2+1 lattice QCD T. Yamazaki 1), K.-I. Ishikawa 2), Y. Kuramashi 3,4), A. Ukawa 3) 1) Kobayashi-Maskawa Institute,
1.Introduction 2.Formalism 3.Results 4.Summary I=2 pi-pi scattering length with dynamical overlap fermion I=2 pi-pi scattering length with dynamical overlap.
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
Hadron spectrum : Excited States, Multiquarks and Exotics Hadron spectrum : Excited States, Multiquarks and Exotics Nilmani Mathur Department of Theoretical.
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Komaba seminarT.Umeda (Tsukuba)1 A study of charmonium dissociation temperatures using a finite volume technique in the lattice QCD T. Umeda and H. Ohno.
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
NN potentials from lattice QCD Noriyoshi ISHII (Univ. of Tsukuba) with Sinya AOKI (Univ. of Tsukuba) Tetsuo HATSUDA (Univ. of Tokyo) Hidekatsu NEMURA (RIKEN)
Scaling study of the chiral phase transition in two-flavor QCD for the improved Wilson quarks at finite density H. Ohno for WHOT-QCD Collaboration The.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
Short-range nuclear force in lattice QCD Noriyoshi Ishii (Univ. of Tokyo) for HALQCD Collaboration S.Aoki (Univ. of Tsukuba), T.Doi (Univ. of Tsukuba),
Pion mass difference from vacuum polarization E. Shintani, H. Fukaya, S. Hashimoto, J. Noaki, T. Onogi, N. Yamada (for JLQCD Collaboration) December 5,
January 2006UKQCD meeting - Edinburgh Light Hadron Spectrum and Pseudoscalar Decay Constants with 2+1f DWF at L s = 8 Robert Tweedie RBC-UKQCD Collaboration.
Study of chemical potential effects on hadron mass by lattice QCD Pushkina Irina* Hadron Physics & Lattice QCD, Japan 2004 Three main points What do we.
1 Lattice Quantum Chromodynamics 1- Literature : Lattice QCD, C. Davis Hep-ph/ Burcham and Jobes By Leila Joulaeizadeh 19 Oct
JPS07 AutumnTakashi Umeda (Tsukuba Univ.)1 Finite temperature lattice QCD with Nf=2+1 Wilson quark action WHOT-QCD Collaboration T.Umeda, S.Aoki, K.Kanaya.
Huey-Wen Lin — Workshop1 Semileptonic Hyperon Decays in Full QCD Huey-Wen Lin in collaboration with Kostas Orginos.
Nucleon and Roper on the Lattice Y. Chen Institute of High Energy Physics, CAS, China Collaborating with S.J. Dong, T. Draper, I. Horvath, F.X. Lee, K.F.
Probing TeV scale physics in precision UCN decays Rajan Gupta Theoretical Division Los Alamos National Lab Lattice 2013 Mainz, 30 July 2013 Superconducting.
CATHIE-INT 09T.Umeda (Hiroshima Univ.)1 Quarkonium correlators on the lattice T. Umeda (Hiroshima Univ.) H. Ohno, K. Kanaya (Univ. of Tsukuba) for WHOT-QCD.
A new method of calculating the running coupling constant --- numerical results --- Etsuko Itou (YITP, Kyoto University) Lattice of William.
Robert Pak (BNL) 2012 RHIC & AGS Annual Users' Meeting 0 Energy Ro Robert Pak for PHENIX Collaboration.
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
Lattice QCD at finite density
Towards the QCD equation of state at the physical point using Wilson fermion WHOT-QCD Collaboration: T. Umeda (Hiroshima Univ.), S. Ejiri (Niigata Univ.),
Hard Probes Quarkonium states at finite temperature Takashi Umeda (BNL) Hard Probes 2006 June 9-16, 2006, Asilomar Conference Grounds Pacific Grove,
Cascade Baryon Spectrum from Lattice QCD Nilmani Mathur Tata Institute, India.
1 Heavy quark potential in full QCD lattice simulations at finite temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
Precision Charmed Meson Spectroscopy and Decay Constants from Chiral Fermions Overlap Fermion on 2+1 flavor Domain Wall Fermion Configurations Overlap.
Toru T. Takahashi with Teiji Kunihiro ・ Why N*(1535)? ・ Lattice QCD calculation ・ Result TexPoint fonts used in EMF. Read the TexPoint manual before you.
Dynamical Anisotropic-Clover Lattice Production for Hadronic Physics A. Lichtl, BNL J. Bulava, J. Foley, C. Morningstar, CMU C. Aubin, K. Orginos, W&M.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
S. Aoki (Univ. of Tsukuba), T. Doi (Univ. of Tsukuba), T. Hatsuda (Univ. of Tokyo), T. Inoue (Univ. of Tsukuba), N. Ishii (Univ. of Tokyo), K. Murano (Univ.
Inter-quark potential from NBS wavefunction on lattice H.Iida (Kyoto Univ.), Y.Ikeda (Tokyo Inst. of Tech) 新学術領域「素核宇宙融合」 x 「新ハドロン」クロスオーバー研究会 July,
Deconfinement and chiral transition in finite temperature lattice QCD Péter Petreczky Deconfinement and chiral symmetry restoration are expected to happen.
QCD on Teraflops computerT.Umeda (BNL)1 QCD thermodynamics on QCDOC and APEnext supercomputers QCD thermodynamics on QCDOC and APEnext supercomputers Takashi.
Low energy scattering and charmonium radiative decay from lattice QCD
Review of ALICE Experiments
Baryons on the Lattice Robert Edwards Jefferson Lab Hadron 09
Lattice College of William and Mary
Thermodynamics of QCD in lattice simulation with improved Wilson quark action at finite temperature and density WHOT-QCD Collaboration Yu Maezawa (Univ.
WHOT-QCD Collaboration Yu Maezawa (RIKEN) in collaboration with
P. Gubler, T.T. Takahashi and M. Oka, Phys. Rev. D 94, (2016).
Eigenspectrum calculation of the non-Hermitian O(a)-improved Wilson-Dirac operator using the Sakurai-Sugiura method H. Sunoa, Y. Nakamuraa,b, K.-I. Ishikawac,
Nucleon Resonances from Lattice QCD
Excited State Spectroscopy from Lattice QCD
Excited state nucleon spectrum
Excited State Spectroscopy from Lattice QCD
Takashi Umeda (Hiroshima Univ.) for WHOT-QCD Collaboration
Neutron EDM with external electric field
Hot wave function from lattice QCD
EoS in 2+1 flavor QCD with improved Wilson fermion
Presentation transcript:

1 2+1 Flavor lattice QCD Simulation on K computer Y.Kuramashi U. of Tsukuba/RIKEN AICS August 2, Mainz

2 Plan of talk §1. K computer and Strategic Field Program §2. Physics Plan §3. Simulation Parameters §4. Preliminary results §5. Summary

3 §1. K computer and Strategic Field Program Tokyo Kobe Tsukuba Kyoto Advanced Institute for Computational Science (Note: independent of RIKEN-BNL-Columbia Collab.) RIKEN AICS Peak=11.28PFlops Logo Computer room

4 Strategic Field Program For strategic use of K computer Government selected 5 strategic fields in science and technology for importance from national view point For each field, Government also selected a core institute Each core institute is responsible for organizing research and supercomputer resources in the respective field and its community, for which they receive − priority allocation of K computer resources − funding to achieve the research goals Strategic FieldCore Institute Life Science & MedicineRIKEN New Materials & EnergyISSP at U. Tokyo Global Change PredictionJAMSTEC Next Generation EngineeringIIS at U. Tokyo Matter and UniverseCCS at U. Tsukuba

5 §2. Physics Plan Scientific target 2+1 flavor QCD ⇒ flavor QCD+QED Various physical quantities Investigation of resonances Direct construction of light nuclei Determination of baryon-baryon potentials

6 Light Nuclei in 2+1 Flavor QCD (1) 2+1 flavor QCD, m π = 0.5 GeV, m N =1.32 GeV 4He3HeNN(3S1)NN(1S0) Binding energy [MeV]43(12)(8)20.3(4.0)(2.0)11.5(1.1)(0.6)7.4(1.3)(0.6 ) Exp. value [MeV] Successful construction of helium nuclei in 2+1 flavor QCD Yamazaki-Ishikawa-YK-Ukawa 12 conference

7 Light Nuclei in 2+1 Flavor QCD (2) NN( 3 S 1 ) and NN( 1 S 0 ) channels Both 3 S 1 and 1 S 0 channels are bound at m π =0.5 GeV |ΔE( 3 S 1 )| > |ΔE( 1 S 0 )| is observed Important to investigate quark mass dependence Target on K computer: construction of nuclei at the physical point

8 Baryon-Baryon Potentials (1) based on equal-time BS amplitude Quenched QCD, m N =1.34GeV Ishii-Aoki-Hatsuda 07 Phenomenological model BS wave function with lattice QCD ⇒ NN Potential

9 Baryon-Baryon Potentials (2) 2+1 flavor QCD, lattice size=32 3 ×64, m π = 0.70, 0.57, 0.41 GeV Attractive phase shift, though the magnitude is just 10% of exp. value (no bound state ⇒ inconsistency against the direct method) Phase shift becomes smaller, as quark mass decreases ⇒ need direct comparison with exp. values at the physical point

10 Collaboration members N.Ishii, N.Ishizuka, Y.Kuramashi, Y.Namekawa, Tsukuba H.Nemura, K.Sasaki, Y.Taniguchi, N.Ukita T.Hatsuda, T.Doi RIKEN-Wako T.Yamazaki Nagoya S.Aoki Kyoto Y.Nakamura RIKEN-AICS K.-I.Ishikawa Hiroshima HAL QCD Collab. joins to determine baryon-baryon potential

11 §3. Simulation Parameters 2+1 flavor QCD Wilson-clover quark action + Iwasaki gauge action Stout smearing with α=0.1 and N smear =6 NP C SW =1.11 determined by SF β=1.82 ⇒ a 〜 0.1 fm Lattice size=96 4 ⇒ ( 〜 9 fm) 4 Hopping parameters: (κ ud,κ s )=( , ) Simulation algorithm − (HB) 2 DDHMC w/ active link for ud quarks, UVPHMC for s quark − Block size=12 4 ⇒ ( 〜 1 fm) 4 − HB parameters: (ρ 1,ρ 2 )=( ,0.9940) − Multi-time scale integrator: (N 1,N 2,N 3,N 4,N 5 )=(15,2,2,2,8) − trajectory length: τ=1 − N poly =310 − Chronological inverter guess: N chrono =16 − Solver: mixed precision nested BiCGStab

12 Performance on K computer Kernel (MatVec) performance: >50% Solver performance: 〜 26% (mixed precision nested BiCGStab) Weak scaling test − 6 3 ×12/node fixed − 16 nodes (V=12 3 ×24) ⇒ nodes (V=48×72×96 2 ) #nodescalability 16 ⇒ % 256 ⇒ % 2048 ⇒ % good weak scaling B/F=0.5 on K computer

13 Non-Perturbative Determination of C SW (1) Schördinger functional method − L 3 ×T=8 3 ×16 (L 3 ×T=12 3 ×24 for volume dependence check) − Choose β such that the lattice spacing becomes around 0.1 fm C SW =1.11 at β=1.82 ⇒ 1/a 〜 2.1 GeV κ C is close to at β=1.82

14 Non-Perturbative Determination of C SW (2) N smear dependence of C SW and Kc C SW monotonically decreases as N smear increases κ C shows a similar behavior

15 §4. Preliminary results Meson and baryon effective masses for smeared-local correlators Smearing function: Aexp(−Br) − (A,B)=(1.2,0.06) for ud quarks − (A,B)=(1.2,0.12) for s quarks

16 Hadron spectrum Further tuning to the physical point is planned with reweighting method Clear deviation is already observed for unstable particles (ρ,K*) Comparison with experiment (normalized by m Ω )

17 ρ Meson Effective Mass It is hard to find a reasonable plateau (same for Δ baryon effective mass) Analysis of 2×2 correlation matrix (ρ,ππ) is necessary Decay channel is open: m ρ >2√{m π 2 +(π/48) 2 } m ρ =776 MeV 2√{m π 2 +(π/48) 2 }

18 §5. Summary ・ K computer and strategic field program ・ 2+1 flavor QCD simulation at the physical point on ( 〜 9 fm) 4 lattice ・ Preliminary results for hadron spectrum