‘Checkerboard’ Electronic Crystal State in Lightly-Doped Ca 2-x Na x CuO 2 Cl 2 Yuhki Kohsaka Curry Taylor J.C. Séamus Davis Cornell Tetsuo Hanaguri Yuhki.

Slides:



Advertisements
Similar presentations
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Advertisements

High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Hole-Doped Antiferromagnets: Relief of Frustration Through Stripe Formation John Tranquada International Workshop on Frustrated Magnetism September 13.
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
Negative Oxygen Isotope Effect on the Static Spin Stripe Order in La Ba CuO 4 Z. Guguchia, 1 R. Khasanov, 2 M. Bendele, 1 E. Pomjakushina,
SDW Induced Charge Stripe Structure in FeTe
Pairing glue antiferromagnetism, polaron pseudogap High-Tc.
The new iron-based superconductor Hao Hu The University of Tennessee Department of Physics and Astronomy, Knoxville Course: Advanced Solid State Physics.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
Kitaoka Lab. M1 Yusuke Yanai Wei-Qiang Chen et al., EPL, 98 (2012)
Fluctuating stripes at the onset of the pseudogap in the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+  Parker et al Nature (2010)
High-T c Superconductor Surface State 15/20/2015 Group member: 陈玉琴、郭亚光、贾晓萌、刘俊义、刘晓雪 彭星星、王建力、王鹏捷 ★ 、喻佳兵 ★ :Group Leader & Speaker.
1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, (2005); Phys. Rev. B 70,
Quantum antiferromagnetism and superconductivity Subir Sachdev Talk online at
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Physical Review B 71, and (2005), cond-mat/
Superconductivity in Zigzag CuO Chains
Quantum phase transitions of correlated electrons and atoms Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Competing orders in the cuprate superconductors.
Insights into quantum matter from new experiments Detecting new many body states will require: Atomic scale resolution of magnetic fields Measuring and.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Talk online:
Spin Waves in Stripe Ordered Systems E. W. Carlson D. X. Yao D. K. Campbell.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,
ECRYS 2011 Confinement-Induced Vortex Phases in Superconductors Institut des Nanosciences de Paris INSP, CNRS, Université Pierre et Marie Curie Paris 6,
The quantum mechanics of two dimensional superfluids Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz Bartosch.
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
What Pins Stripes in La2-xBaxCuO4? Neutron Scattering Group
Whither Strongly Correlated Electron Physics ? T.M.Rice ETHZ & BNL What`s so unique about the cuprates among the many materials with strongly correlated.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Young-June Kim Department of Physics University of Toronto Resonant Inelastic X-ray Scattering Investigation of Cuprates.
SO(5) Theory of High Tc Superconductivity Shou-cheng Zhang Stanford University.
Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology.
Nonisovalent La substitution in LaySr14-y-xCaxCu24O41: switching the transport from ladders.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
NMR evidence for spatial correlations between spin and charge order in (La,Eu) 2-x Sr x CuO 4 Nicholas Hans-Joachim Grafe, Los Alamos.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Quantum theory of vortices and quasiparticles in d-wave superconductors.
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Talk online at Physical Review.
Dung-Hai Lee U.C. Berkeley Quantum state that never condenses Condense = develop some kind of order.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
KITPC 23/07/07 Gaps and pseudogaps in n and p-type cuprates from infrared spectroscopy. Ricardo LOBO, Andrés SANTANDER-SYRO, Alexandre ZIMMERS, Nicole.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Past and Future Insights from Neutron Scattering Collin Broholm * Johns Hopkins University and NIST Center for Neutron Research  Virtues and Limitations.
Three Discoveries in Underdoped Cuprates “Thermal metal” in non-SC YBCO Sutherland et al., cond-mat/ Giant Nernst effect Z. A. Xu et al., Nature.
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
ARPES studies of unconventional
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Zlatko Tesanovic, Johns Hopkins University o Strongly correlated.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
SNS Experimental FacilitiesOak Ridge X /arb Spin dynamics in cuprate superconductors T. E. Mason Spallation Neutron Source Project Harrison Hot Springs.
ARPES studies of cuprates
The quantum phase transition between a superfluid and an insulator: applications to trapped ultracold atoms and the cuprate superconductors.
Special Romp session, LT25
High Temperature Superconductivity
Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal by Hiroyuki Inoue, András Gyenis, Zhijun Wang, Jian Li,
Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2 by Syu-You Guan, Peng-Jen Chen, Ming-Wen Chu, Raman Sankar,
Presentation transcript:

‘Checkerboard’ Electronic Crystal State in Lightly-Doped Ca 2-x Na x CuO 2 Cl 2 Yuhki Kohsaka Curry Taylor J.C. Séamus Davis Cornell Tetsuo Hanaguri Yuhki Kohsaka Hidenori Takagi Tokyo/RIKEN M. Azuma M. Takano Kyoto Christian Lupien Université de Sherbrooke

OUTLINE Ca 2-x Na x CuO 2 Cl 2 Zero-temperature Pseudogap Spectrum Spectroscopic Imaging

La 2-x Sr x CuO 4 YBa 2 Cu 3 O y Bi 2 Sr 2 CaCu 2 O y Cuprate High-T c superconductors La(Sr) CuO 2 Y Ba CuO CuO 2 Ca Sr Bi O Ca 2-x Na x CuO 2 Cl 2

Identity of Electronic Ground States zero-temperature ‘pseudogap’ regime: identity of electronic ground state? ZTPG

Possible orders in the pseudogap So many! Orbital-Current Phases - broken time-reversal symmetry - d-Density Wave : S. Chakravarty, R. B. Laughlin, et al.,PRB 63, (2001). - Intra Unit Cell Orbital Current : C. M. Varma, PRB 55, (1997). - Staggered Flux Phase : I. Affleck & J. B. Marsdon, PRB 37, 3774 (1988). J. Kishine, P. A. Lee & X. –G. Wen, PRL 86, 5365 (2000). Electronic Crystals - broken translational/rotational symmetry - Stripes : J. Zaanen & O. Gunnarsson PRB 40, 7391 (1989). K. Machida, Physica C 158, 192 (1989). S. A. Kivelson, E. Fradkin & V. J. Emery, Nature 393, 550 (1999). E. Demler, S. Sachdev, et al., PRL 87, (2002). - Checkerboards / Wigner Crystals : M. Vojta, PRB 66, (2002). J. Zaanen & O. Gunnarsson PRB 40, 7391 (1989). H.-D. Chen et al., PRL (2002). H. C. Fu, J. C. Davis and D.-H. Lee, cond-mat/ Charge Order Embedded in an SC State: P. W. Anderson, cond-mat/ A. Melikyan & Z. Tesanovic, cond-mat/ M. Takigawa, M. Ichioka & K. Machida, private commun.

Ca 2-x Na x CuO 2 Cl 2 (Na-CCOC) Prof. Hidenori Takagi University of Tokyo

Complications in high-p high-T pseudogap regime. T>Tc Bi-2212 but  E~3.5k B T c T=100K and Bi-2212 is strongly disordered ZTPG

T=0 PG Na-CCOC excellent energy resolution access the ZTPG ground state -> MI Advantages of low-p zero-temperature pseudogap regime. ZTPG

Cl atom replaces apical O of La 2 CuO 4 Single CuO 2 layer, easily CaCl, highly insulating cleave surface, no supermodulation, can be doped from p~0 to p~0.25. Ca 2 CuO 2 Cl 2

@Takano Lab. Kyoto Univ. Flux method (Ca 2 CuO 2 Cl 2 (poly)+0.2NaClO NaCl) Cubic anvil type high-pressure apparatus Y. Kohsaka et al., J. Am. Chem. Soc., 124, (2002). Crystal growth under pressure (~GPa)

Characterization of Ca 2-x Na x CuO 2 Cl 2 crystals K. Waku et al., Y. Kohsaka, et al, J. Am Chem. Soc. 124, (2002) Insulating at x~1/16 Current Maximum doping for single crystals

Undoped compound Ca 2 CuO 2 Cl 2 is similar to La 2 CuO 4. It is well characterized by ARPES. Neutron measurement observed the AF order T N =270K F. Ronning et al, Science 282, 2067 (1998) and PRB 67, (2003). ARPES on Ca 2 CuO 2 Cl 2

ARPES on Ca 2-x Na x CuO 2 Cl 2 Y. Kohsaka et al., J. Phys. Soc. Jpn., 72, 1018 (2003). F. Ronning et al, PRB 67, (2003)

Supports a Fermi-arc at x>0.05 Gapped by SC  0.10 Four fold symmetric pseudogap at ( ,0) ARPES on Ca 2-x Na x CuO 2 Cl 2 Coherent states on Fermi-arc ~200meV pseudogap & incoherent states at antinodes.

STM/STS Technique

STM technique

Cleaver Stud Sample Rod

NaCCOC data

200 mV / 50 pA Topo image of CaCl plane of Ca 1.9 Na 0.1 CuO 2 Cl 2 CuO 2 CaCl CuO 2 CaCl Nature 430, 1001 (Aug )

Three energy ranges T. Hanaguri et al., Nature 430, 1001 (2004) Electronic phase diagram Intermediate energy (<150 mV): ‘Checkerboard’ pattern (V shape) V-shaped spectum H igh energy (>150 mV): Mottness mapping (asymmetry) Low energy (<10 mV): Superconductivity dI/dV| +24m V 5 nm

Intermediate energies: checkerboard

dI/dV| +24mV T < 250 mK V sample = 200 mV I t = 100 pA 0.47 nS Topograph T < 250 mK V sample = 200 mV I t = 50 pA 1 Å Spectroscopic imaging within pseudogap 5 nm 200 Å Nature 430, 1001 (Aug )

-150 mV Maps 10% doping

-48 mV

-24 mV

-8 mV

+8 mV

+24 mV

+48 mV

+150 mV

+8mV -8mV +24mV -24mV +48mV -48mV +150mV -150mV Topo. 200 Å×200 Å T < 250 mK V sample = 200mV (400mV for 150mV data) I t = 100 pA Spectroscopic imaging

FFT from Topograph Atoms

-150 mV FFT from Maps

-48 mV

-24 mV

-8 mV

8 mV

24 mV

48 mV

150 mV

Non-dispersive LDOS(E) Modulations Nature 430, 1001 (2004). Wavevectors: (1/4,0) and unexpected (¾,0)

10% +24mV dI/dV map nS Examine spatial structure directly at the atomic scale

dI/dV| +25mV T < 250 mK V sample = 200 mV I t = 100 pA 0.87 nS Topograph T < 250 mK V sample = 200 mV I t = 50 pA 1 Å Examine spatial structure directly at the atomic scale Nature 430, 1001 (Aug )

Point Spectra

Line cuts: Map vs Topo

Simulation z = 33 cos(1/4) – 34 cos(3/4)z = 33 cos(1/4) + 34 cos(3/4) z = 33 cos(1/4) + 34 sin(3/4) Differences z = 33 cos(1/4) + 34 cos(3/4) - 11 cos(1)

Bias symmetry/asymmetry inside gap Certainly not a simple situation of bias symmetric checkerboard: Some Fourier components exhibit bias symmetry and some do not. +8mV -8mV +24mV -24mV +48mV -48mV

q=2  (3/4a) Kyle Shen et al Science 307, 901 (2005) Z.-X. Shen Group Stanford University Checkerboard state is constructed from scattering of the zone- face states Zone-face ‘nesting vector’ q=2  /4a independent of doping: ARPES: Scattering between parallel FS elements

First STS imaging of a cuprate in zero temp. pseudogap regime. AF Conclusions ZTPG Characteristic and strongly asymmetric tunneling spectrum Discovery of a ‘checkerboard’ electronic crystal state in Na-CCOC Spatial structure ~ exactly commensurate 4X4 electronic entity

Prof. Tetsuo Hanaguri RIKEN Prof. Hidenori Takagi University of Tokyo Dr. Yuhki Kohsaka Cornell University Prof. Dung-Hai Lee UC Berkeley Prof. Mikio Takano Kyoto University Dr. Masaki Azuma Kyoto University Curry Taylor Cornell University Prof. J.C. Séamus Davis Cornell University