Markov Logic Networks Pedro Domingos Dept. Computer Science & Eng. University of Washington (Joint work with Matt Richardson)

Slides:



Advertisements
Similar presentations
Naïve Bayes. Bayesian Reasoning Bayesian reasoning provides a probabilistic approach to inference. It is based on the assumption that the quantities of.
Advertisements

Discriminative Training of Markov Logic Networks
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Discriminative Structure and Parameter.
CPSC 322, Lecture 30Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 30 March, 25, 2015 Slide source: from Pedro Domingos UW.
Markov Logic Networks: Exploring their Application to Social Network Analysis Parag Singla Dept. of Computer Science and Engineering Indian Institute of.
Undirected Probabilistic Graphical Models (Markov Nets) (Slides from Sam Roweis Lecture)
Markov Logic Networks Instructor: Pedro Domingos.
Undirected Probabilistic Graphical Models (Markov Nets) (Slides from Sam Roweis)
Markov Logic: Combining Logic and Probability Parag Singla Dept. of Computer Science & Engineering Indian Institute of Technology Delhi.
Review Markov Logic Networks Mathew Richardson Pedro Domingos Xinran(Sean) Luo, u
Speeding Up Inference in Markov Logic Networks by Preprocessing to Reduce the Size of the Resulting Grounded Network Jude Shavlik Sriraam Natarajan Computer.
Markov Networks.
Efficient Weight Learning for Markov Logic Networks Daniel Lowd University of Washington (Joint work with Pedro Domingos)
Unifying Logical and Statistical AI Pedro Domingos Dept. of Computer Science & Eng. University of Washington Joint work with Jesse Davis, Stanley Kok,
Markov Logic: A Unifying Framework for Statistical Relational Learning Pedro Domingos Matthew Richardson
Markov Logic Networks Hao Wu Mariyam Khalid. Motivation.
Speaker:Benedict Fehringer Seminar:Probabilistic Models for Information Extraction by Dr. Martin Theobald and Maximilian Dylla Based on Richards, M., and.
School of Computing Science Simon Fraser University Vancouver, Canada.
Constraint Logic Programming Ryan Kinworthy. Overview Introduction Logic Programming LP as a constraint programming language Constraint Logic Programming.
CSE 574 – Artificial Intelligence II Statistical Relational Learning Instructor: Pedro Domingos.
Statistical Relational Learning Pedro Domingos Dept. of Computer Science & Eng. University of Washington.
Recursive Random Fields Daniel Lowd University of Washington June 29th, 2006 (Joint work with Pedro Domingos)
CSE 574: Artificial Intelligence II Statistical Relational Learning Instructor: Pedro Domingos.
Inference. Overview The MC-SAT algorithm Knowledge-based model construction Lazy inference Lifted inference.
Recursive Random Fields Daniel Lowd University of Washington (Joint work with Pedro Domingos)
Unifying Logical and Statistical AI Pedro Domingos Dept. of Computer Science & Eng. University of Washington Joint work with Stanley Kok, Daniel Lowd,
5/25/2005EE562 EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 16, 6/1/2005 University of Washington, Department of Electrical Engineering Spring 2005.
Relational Models. CSE 515 in One Slide We will learn to: Put probability distributions on everything Learn them from data Do inference with them.
Markov Logic: A Simple and Powerful Unification Of Logic and Probability Pedro Domingos Dept. of Computer Science & Eng. University of Washington Joint.
Learning, Logic, and Probability: A Unified View Pedro Domingos Dept. Computer Science & Eng. University of Washington (Joint work with Stanley Kok, Matt.
On the Proper Treatment of Quantifiers in Probabilistic Logic Semantics Islam Beltagy and Katrin Erk The University of Texas at Austin IWCS 2015.
CPSC 422, Lecture 18Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 18 Feb, 25, 2015 Slide Sources Raymond J. Mooney University of.
1 Learning the Structure of Markov Logic Networks Stanley Kok & Pedro Domingos Dept. of Computer Science and Eng. University of Washington.
1 Bayesian Networks Chapter ; 14.4 CS 63 Adapted from slides by Tim Finin and Marie desJardins. Some material borrowed from Lise Getoor.
Statistical Relational Learning Pedro Domingos Dept. Computer Science & Eng. University of Washington.
Pedro Domingos Dept. of Computer Science & Eng.
Boosting Markov Logic Networks
Markov Logic Parag Singla Dept. of Computer Science University of Texas, Austin.
Markov Logic: A Unifying Language for Information and Knowledge Management Pedro Domingos Dept. of Computer Science & Eng. University of Washington Joint.
1 Naïve Bayes Models for Probability Estimation Daniel Lowd University of Washington (Joint work with Pedro Domingos)
Relational Probability Models Brian Milch MIT 9.66 November 27, 2007.
Machine Learning For the Web: A Unified View Pedro Domingos Dept. of Computer Science & Eng. University of Washington Includes joint work with Stanley.
Markov Logic And other SRL Approaches
1 Learning the Structure of Markov Logic Networks Stanley Kok.
Markov Random Fields Probabilistic Models for Images
Markov Logic and Deep Networks Pedro Domingos Dept. of Computer Science & Eng. University of Washington.
Inference Complexity As Learning Bias Daniel Lowd Dept. of Computer and Information Science University of Oregon Joint work with Pedro Domingos.
BioSnowball: Automated Population of Wikis (KDD ‘10) Advisor: Dr. Koh, Jia-Ling Speaker: Lin, Yi-Jhen Date: 2010/11/30 1.
Modeling Speech Acts and Joint Intentions in Modal Markov Logic Henry Kautz University of Washington.
First-Order Logic and Inductive Logic Programming.
1 Markov Logic Stanley Kok Dept. of Computer Science & Eng. University of Washington Joint work with Pedro Domingos, Daniel Lowd, Hoifung Poon, Matt Richardson,
CPSC 322, Lecture 31Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 33 Nov, 25, 2015 Slide source: from Pedro Domingos UW & Markov.
CPSC 322, Lecture 30Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 30 Nov, 23, 2015 Slide source: from Pedro Domingos UW.
Happy Mittal (Joint work with Prasoon Goyal, Parag Singla and Vibhav Gogate) IIT Delhi New Rules for Domain Independent Lifted.
Markov Logic: A Representation Language for Natural Language Semantics Pedro Domingos Dept. Computer Science & Eng. University of Washington (Based on.
Progress Report ekker. Problem Definition In cases such as object recognition, we can not include all possible objects for training. So transfer learning.
Scalable Statistical Relational Learning for NLP William Y. Wang William W. Cohen Machine Learning Dept and Language Technologies Inst. joint work with:
Probabilistic Reasoning Inference and Relational Bayesian Networks.
New Rules for Domain Independent Lifted MAP Inference
An Introduction to Markov Logic Networks in Knowledge Bases
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 30
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 29
First-Order Logic and Inductive Logic Programming
Logic for Artificial Intelligence
Markov Networks.
Lifted First-Order Probabilistic Inference [de Salvo Braz, Amir, and Roth, 2005] Daniel Lowd 5/11/2005.
Class #19 – Tuesday, November 3
Class #16 – Tuesday, October 26
Markov Networks.
Statistical Relational AI
Presentation transcript:

Markov Logic Networks Pedro Domingos Dept. Computer Science & Eng. University of Washington (Joint work with Matt Richardson)

Overview Representation Inference Learning Applications

Markov Logic Networks A logical KB is a set of hard constraints on the set of possible worlds Let’s make them soft constraints: When a world violates a formula, It becomes less probable, not impossible Give each formula a weight (Higher weight  Stronger constraint)

Definition A Markov Logic Network (MLN) is a set of pairs (F, w) where F is a formula in first-order logic w is a real number Together with a finite set of constants, it defines a Markov network with One node for each grounding of each predicate in the MLN One feature for each grounding of each formula F in the MLN, with the corresponding weight w

Example of an MLN Cancer(A) Smokes(A)Smokes(B) Cancer(B) Suppose we have two constants: Anna (A) and Bob (B)

Example of an MLN Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B) Suppose we have two constants: Anna (A) and Bob (B)

Example of an MLN Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B) Suppose we have two constants: Anna (A) and Bob (B)

Example of an MLN Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B) Suppose we have two constants: Anna (A) and Bob (B)

More on MLNs Graph structure: Arc between two nodes iff predicates appear together in some formula MLN is template for ground Markov nets Typed variables and constants greatly reduce size of ground Markov net Functions, existential quantifiers, etc. MLN without variables = Markov network (subsumes graphical models)

MLNs and First-Order Logic Infinite weights  First-order logic Satisfiable KB, positive weights  Satisfying assignments = Modes of distribution MLNs allow contradictions between formulas How to break KB into formulas? Adding probability increases degrees of freedom Knowledge engineering decision Default: Convert to clausal form

Overview Representation Inference Learning Applications

Conditional Inference P(Formula|MLN,C) = ? MCMC: Sample worlds, check formula holds P(Formula1|Formula2,MLN,C) = ? If Formula2 = Conjunction of ground atoms First construct min subset of network necessary to answer query (generalization of KBMC) Then apply MCMC

Grounding the Template Initialize Markov net to contain all query preds For each node in network Add node’s Markov blanket to network Remove any evidence nodes Repeat until done

Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)

Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)

Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)

Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)

Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)

Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)

Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)

Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)

Example Grounding P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A)) Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B)

Markov Chain Monte Carlo Gibbs Sampler 1. Start with an initial assignment to nodes 2. One node at a time, sample node given others 3. Repeat 4. Use samples to compute P(X) Apply to ground network Many modes  Multiple chains Initialization: MaxWalkSat [Kautz et al., 1997]

MPE Inference Find most likely truth values of non-evidence ground atoms given evidence Apply weighted satisfiability solver (maxes sum of weights of satisfied clauses) MaxWalkSat algorithm [Kautz et al., 1997] Start with random truth assignment With prob p, flip atom that maxes weight sum; else flip random atom in unsatisfied clause Repeat n times Restart m times

Overview Representation Inference Learning Applications

Learning Data is a relational database Closed world assumption Learning structure Corresponds to feature induction in Markov nets Learn / modify clauses ILP (e.g., CLAUDIEN [De Raedt & Dehaspe, 1997] ) Better approach: Stanley will describe Learning parameters (weights)

Learning Weights Like Markov nets, except with parameter tying over groundings of same formula 1 st term: # true groundings of formula in DB 2 nd term: inference required, as before (slow!) Feature count according to data Feature count according to model

Pseudo-Likelihood [Besag, 1975] Likelihood of each ground atom given its Markov blanket in the data Does not require inference at each step Optimized using L-BFGS [Liu & Nocedal, 1989]

Most terms not affected by changes in weights After initial setup, each iteration takes O(# ground predicates x # first-order clauses) Gradient of Pseudo-Log-Likelihood where nsat i (x=v) is the number of satisfied groundings of clause i in the training data when x takes value v

Overview Representation Inference Learning Applications

Domain University of Washington CSE Dept. 12 first-order predicates: Professor, Student, TaughtBy, AuthorOf, AdvisedBy, etc constants divided into 10 types: Person (442), Course (176), Pub. (342), Quarter (20), etc. 4.1 million ground predicates 3380 ground predicates (tuples in database)

Systems Compared Hand-built knowledge base (KB) ILP: CLAUDIEN [De Raedt & Dehaspe, 1997] Markov logic networks (MLNs) Using KB Using CLAUDIEN Using KB + CLAUDIEN Bayesian network learner [Heckerman et al., 1995] Naïve Bayes [Domingos & Pazzani, 1997]

Sample Clauses in KB Students are not professors Each student has only one advisor If a student is an author of a paper, so is her advisor Advanced students only TA courses taught by their advisors At most one author of a given paper is a professor

Methodology Data split into five areas: AI, graphics, languages, systems, theory Leave-one-area-out testing Task: Predict AdvisedBy(x, y) All Info: Given all other predicates Partial Info: With Student(x) and Professor(x) missing Evaluation measures: Conditional log-likelihood (KB, CLAUDIEN: Run WalkSat 100x to get probabilities) Area under precision-recall curve

Results SystemAll InfoPartial Info CLLAUCCLLAUC MLN(KB+CL) MLN(KB) MLN(CL) KB CL NB BN

Results: All Info

Results: Partial Info

Efficiency Learning time: 16 mins Time to infer all AdvisedBy predicates: With complete info: 8 mins With partial info: 15 mins (124K Gibbs passes)

Other Applications UW-CSE task: Link prediction Collective classification Link-based clustering Social network models Object identification Etc.

Other SRL Approaches are Special Cases of MLNs Probabilistic relational models (Friedman et al, IJCAI-99) Stochastic logic programs (Muggleton, SRL-00) Bayesian logic programs (Kersting & De Raedt, ILP-01) Relational Markov networks (Taskar et al, UAI-02) Etc.

Open Problems: Inference Lifted inference Better MCMC (e.g., Swendsen-Wang) Belief propagation Selective grounding Abstraction, summarization, multi-scale Special cases

Open Problems: Learning Discriminative training Learning and refining structure Learning with missing info Faster optimization Beyond pseudo-likelihood Learning by reformulation

Open Problems: Applications Information extraction & integration Semantic Web Social networks Activity recognition Parsing with world knowledge Scene analysis with world knowledge Etc.

Summary Markov logic networks combine first-order logic and Markov networks Syntax: First-order logic + Weights Semantics: Templates for Markov networks Inference: KBMC + MaxWalkSat + MCMC Learning: ILP + Pseudo-likelihood SRL problems easily formulated as MLNs Many open research issues