Experimental study of Efimov scenario in ultracold bosonic lithium

Slides:



Advertisements
Similar presentations
Un condensat de chrome pour létude des interactions dipolaires. Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Advertisements

Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
The University of Tokyo
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Experiments with ultracold atomic gases Andrey Turlapov Institute of Applied Physics, Russian Academy of Sciences Nizhniy Novgorod.
Study of universal few-body states in 7 Li - open answers to open questions, or everything I have learned on physics of ultracold lithium atoms. (A technical.
Understanding Feshbach molecules with long range quantum defect theory Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland EuroQUAM.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Making cold molecules from cold atoms
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
The Efimov Effect in Ultracold Gases Weakly Bounds Systems in Atomic and Nuclear Physics March , 2010 Institut für Experimentalphysik, Universität.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Numerical Studies of Universality in Few-Boson Systems Javier von Stecher Department of Physics and JILA University of Colorado Probable configurations.
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
On the path to Bose-Einstein condensate (BEC) Basic concepts for achieving temperatures below 1 μK Author: Peter Ferjančič Mentors: Denis Arčon and Peter.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Experiments with ultracold atomic gases
ATOM-ION COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 20 February 2008 Institute for Theoretical Physics, University.
INTRODUCTION TO PHYSICS OF ULTRACOLD COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 14 February 2008 Institute for.
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Experimental study of universal few-body physics with ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel Laboratoire.
Observation of an Efimov spectrum in an atomic system Matteo Zaccanti LENS, University of Florence.
Determination of fundamental constants using laser cooled molecular ions.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
One Dimensional Bosons in a Harmonic trap Sung-po Chao Rutgers University 2008/02/20 Journal club.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Ultracold Polar Molecules in Gases and Lattices Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland Quantum Technologies Conference:
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Triatomic states in ultracold gases Marcelo Takeshi Yamashita Universidade Estadual Paulista - Brazil  Lauro Tomio – IFT / Unesp  Tobias Frederico –
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Scales of critically stable few-body halo system Tobias Frederico Instituto Tecnológico de Aeronáutica São José dos Campos - Brazil  Marcelo T. Yamashita.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Duke University, Physics Department and the Fitzpatrick Institute for Photonics · Durham, NC Collective Nonlinear Optical Effects in an Ultracold Thermal.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
An atomic Fermi gas near a p-wave Feshbach resonance
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Adiabatic hyperspherical study of triatomic helium systems
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Collisional loss rate measurement of Cesium atoms in MOT Speaker : Wang guiping Date : December 25.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
Deterministic preparation and control of a few fermion system.
Extremely dilute, but strongly correlated: Experiments with ultracold fermions.
Center for Quantum Physics Innsbruck Center for Quantum Physics Innsbruck Austrian Academy of Sciences Austrian Academy of Sciences University strongly.
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
Making cold molecules from cold atoms
Atomic BEC in microtraps: Localisation and guiding
Laboratoire de Physique des Lasers
Presentation transcript:

Experimental study of Efimov scenario in ultracold bosonic lithium Lev Khaykovich Physics Department, Bar-Ilan University, 52900 Ramat Gan, Israel FRISNO-11, Aussois, 28/3/2011

Outline Experimental approach - all optical BEC of lithium Exploring Feshbach resonances on F=1 state. Spontaneous spin purification. Universal quantum states in three body domain (scattering length a is the largest length scale in the system) Weakly bound Efimov trimers. Log periodic behavior of three-body recombination. Evidence of spin independent short range 3-body physics. Mapping between the scattering length and the applied magnetic field – direct association of Feshbach molecules. Conclusions – is the nonuniversal part of the theory nonuniversal?

Experimental system: bosonic lithium Why lithium? Compared to other atomic species available for laser cooling, lithium has the smallest range of van der Waals potential: Thus it is easier to fulfill the universal physics requirement: |a| >> r0

Experimental system: bosonic lithium What’s lithium? Bulk metal – light and soft Magneto-optically trapped atoms

All optical BEC: optical dipole trap Direct loading of an optical dipole trap from a MOT 0 order (helping beam) +1 order (main trap) Ytterbium Fiber Laser P = 100 W N=2x106 T=300 mK w0 = 31 mm U = 2 mK main trap Q = 19.50 * The helping beam is effective only when the main beam is attenuated helping beam w0 = 40 mm N. Gross and L. Khaykovich, PRA 77, 023604 (2008)

Tuning the s-wave scattering length Feshbach resonance A weakly bound state is formed for positive a – Feshbach molecule

Feshbach resonances on F=1 state Theoretical prediction for Feshbach resonances S. Kokkelmans, unpublished

Search for Feshbach resonances Atoms are optically pumped to F=1 state. Positions of Feshbach resonances from atom loss measurements: Narrow resonance: 845.8(7) G Wide resonance: 894.2(7) G From the whole zoo of possible resonances only two were detected.

Spontaneous spin purification Spin selective measurements to identify where the atoms are. Spin-flip collisions: |F=1, mF=0> N. Gross and L. Khaykovich, PRA 77, 023604 (2008)

Feshbach resonances on mF=0 state Theoretical prediction for Feshbach resonances This is not the absolute ground state!

Experimental playground Absolute ground state The one but lowest Zeeman state

Three-body universality: Efimov qunatum states

Quantum states near two-body resonance (Efimov scenario)

Universal three-body bound states even more weakly bound trimers weakly bound trimers

Universal three-body bound states Position of an Efimov state is nonuniversal. It is defined by a three-body parameter.

Experimental observables – Efimov resonances One atom and a dimer couple to an Efimov trimer Three atoms couple to an Efimov trimer Experimental observable - enhanced three-body recombination

Three-body recombination Release of binding energy causes loss which probes 3-body physics.

Manifistation of Efimov resonances One atom and a dimer couple to an Efimov trimer Three atoms couple to an Efimov trimer Enhanced three-body loss: collisions at much larger distance

Experimental observables – suppressed three-body recombination There are two paths for the 3- body recombination towards deeply bound state

Suppressed three-body recombination deeply bound molecule Two paths interfere destructively a certain scattering lengths – recombination minima.

Three-body recombination theory Loss rate from a trap: K3 – 3-body loss coefficient [cm6/sec] Dimension analysis: Full treatment:

Effective field theory Loss into deeply bound molecules Loss into shallow dimer Recombination minima Efimov resonances Braaten & Hammer, Phys. Rep. 428, 259 (2006)

Experimental results mf = 1; Feshbach resonance ~740G. a > 0: T= 2 – 3 mK a < 0: T= 1 – 2 mK mf = 1; Feshbach resonance ~740G. N. Gross, Z. Shotan, S. Kokkelmans and L. Khaykovich, PRL 103, 163202 (2009); PRL 105, 103203 (2010).

Experimental results mf = 1; Feshbach resonance ~740G. a > 0: T= 2 – 3 mK a < 0: T= 1 – 2 mK mf = 1; Feshbach resonance ~740G. mf = 0; Feshbach resonance ~895G. N. Gross, Z. Shotan, S. Kokkelmans and L. Khaykovich, PRL 103, 163202 (2009); PRL 105, 103203 (2010).

Experimentally demonstrated Efimov features This resonance This minimum

Experimentally demonstrated Efimov features Theses two resonances are related by 22.7

Experimentally demonstrated Efimov features Theses two resonances are related by 22

Experimentally demonstrated Efimov features This resonance This minimum This resonance

Summary of the results Fitting parameters to the universal theory: UT prediction: a+/|a-| = 0.96(0.3) The universal factor of 22.7 is confirmed across the region of Three-body parameter is the same (within the experimental errors) for both nuclear-spin subleves. N. Gross, Z. Shotan, S. Kokkelmans and L. Khaykovich, PRL 103, 163202 (2009); PRL 105, 103203 (2010).

the scattering length And the applied magnetic field Mapping between the scattering length And the applied magnetic field

Mapping between the scattering length and the applied magnetic field Bare state (non-universal) dimer: Feshbach molecule (universal dimer):

Universal two-body bound state There is only a small fraction of the wave function in the bound state. The size of the bound state increases. “Quantum halo states” The size of the bound state is that of a singlet potential: ~1.5 nm Progressive contamintion by the atomic continuum

Experimental probe Loss mechanism from the trap (release of binding energy): Deeply bound molecule

Mapping between the scattering length and the applied magnetic field Precise characterization of Feshbach resonances by rf-spectroscopy of universal dimers. A typical RF spectrum N. Gross, Z. Shotan, O. Machtey, S. Kokkelmans and L. Khaykovich, C.R. Physique 12, 4 (2011) ; arXiv:1009.0926

Mapping between the scattering length and the applied magnetic field Precise characterization of Feshbach resonances by rf-spectroscopy of universal dimers. Solid (dashed) line – local (global) analysis N. Gross, Z. Shotan, O. Machtey, S. Kokkelmans and L. Khaykovich, C.R. Physique 12, 4 (2011) ; arXiv:1009.0926

Mapping between the scattering length and the applied magnetic field Precise characterization of Feshbach resonances by rf-spectroscopy of universal dimers. Improved characterization of Li inter-atomic potentials. N. Gross, Z. Shotan, O. Machtey, S. Kokkelmans and L. Khaykovich, C.R. Physique 12, 4 (2011) ; arXiv:1009.0926

Conclusions For two different Fesbach resonances on two different nuclear-spin sublevles of the same atomic system we demonstrate: Universal scaling factor of 22.7 across the region of . Same positions of the Efimov features (within the experimental errors). First experimental indication that the nonuniversal part of the universal theory – the three-body parameter – might have some “universal” properties. New insight from Innsbruck group – for three different Feshbach resonances the Efimov features are the same!

People Bar-Ilan University, Israel Eindhoven University of Technology, The Netherlands Servaas Kokkelmans