Lesson learned in Linac Commissioning Here I introduce 3 kinds of beam loss generated by following issues 1.Intra beam stripping (IBSt) in ACS 2.Dark.

Slides:



Advertisements
Similar presentations
OWASP Japan 2 nd local chapter meeting Short talk of XSS Jun Yosuke HASEGAWA 短いXSSの話.
Advertisements

あどべんちゃーにほんご L. 2か にほんごのきょうしつ /Japanese Classroom General goals of the lessons: You will be able to communicate the information below in the given situations.
Copyright © 2010 Nobot All Rights Reserved.
Experience with Bunch Shape Monitors at SNS A. Aleksandrov Spallation Neutron Source, Oak Ridge, USA.
© S. Hamano and W. Kikuchi 1 Visualizing Japanese Grammar Appendix Shoko Hamano George Washington University.
HKS Analysis Log Jun 2006 part3 D.Kawama. 0 .今回の目次 1.Target での dE/dX 2.HKS sieve slit simulation(Geant4)
SPSSによるHosmer-Lemeshow検定について
7.n次の行列式   一般的な(n次の)行列式の定義には、数学的な概念がいろいろ必要である。まずそれらを順に見ていく。
9.線形写像.
学生の携帯電話選択理由 岡田隆太.
概要 2009 年 10 月 23 日に、いて座に出現した X 線新星 (XTE J ) を、出現から消滅まで 全天 X 線監視装置 MAXI (マキシ)で観測したところ、 新種のブラックホール新星であることが判明した。 従来のブラックホールを、 多量のガスを一気に飲み込む「肉食系」と.
時間的に変化する信号. 普通の正弦波 は豊富な情報を含んでいません これだけではラジオのような複雑な情報 を送れない 振幅 a あるいは角速度 ω を時間的に変化 させて情報を送る.
5.連立一次方程式.
相関.
ノイズ. 雑音とも呼ばれる。(音でなくても、雑 音という) 入力データに含まれる、本来ほしくない 成分.
素数判定法 2011/6/20.
1章 行列と行列式.
フーリエ級数. 一般的な波はこのように表せる a,b をフーリエ級数とい う 比率:
Excelによる積分.
計算のスピードアップ コンピュータでも、sin、cosの計算は大変です 足し算、引き算、掛け算、割り算は早いです
複素数.
1 0章 数学基礎. 2 ( 定義)集合 集合については、 3セメスタ開講の「離散数学」で詳しく扱う。 集合 大学では、高校より厳密に議論を行う。そのために、議論の 対象を明確にする必要がある。 ある “ もの ” (基本的な対象、概念)の集まりを、 集合という。 集合に含まれる “ もの ” を、集合の要素または元という。
信号測定. 正弦波 多くの場合正弦波は 0V の上下で振動する しかし、これでは AD 変換器に入れら れないので、オフ セットを調整して データを取った.
1 9.線形写像. 2 ここでは、行列の積によって、写像を 定義できることをみていく。 また、行列の積によって定義される写 像の性質を調べていく。
ビット. 十進数と二進数 十進数  0から9までの数字を使って 0、1、2、3、4、5、6、7、8、9、 10、11、12 と数える 二進数  0と1を使って 0、1、10、11、100、101、11 0、111 と数える.
正弦波.
JPN 312 (Fall 2007): Conversation and Composition Contraction (2); 意見を言う (to express your opinion)
SUPJ2010 Japanese Ⅱ( A ) Elementary Japanes e ‐ in twenty hours- Chapter 7.
JPN 311: Conversation and Composition 勧誘 (invitation)
JPN 311: Conversation and Composition 伝言 (relaying a message)
JPN 311: Conversation and Composition 許可 (permission)
JPN 312 (Fall 2007): Conversation and Composition 文句 ( もんく ) を言う.
HKS Analysis Log Jul 2006 Part1 D.Kawama. 第壱部 HKS Sieve Slit Analysis.
NODA Ken, KAJITA Satoshi and SASA Yoshinobu Truss Contest 2004 idea 男がこう言っ た。 「デザインにこだわろう。」 現場が一瞬凍りついた。 男はこう続けた。 「記録に残るだけではだめだ、記憶に残さなくて は。」 現場がひとつになった。
Kitenet の解析 (110118) 九州大学 工学部 電気情報工学科 岡村研究室 久保 貴哉.
Exercise IV-A p.164. What did they say? 何と言ってましたか。 1.I’m busy this month. 2.I’m busy next month, too. 3.I’m going shopping tomorrow. 4.I live in Kyoto.
HCC Hair Color Change. メンバー ソ 渋谷麻美 ソ 渋谷麻美 ソ 清野理衣子 ソ 清野理衣子 ソ 三上貴大 ソ 三上貴大.
1 ATF Linac status and future plan E=1.28GeV Ne=2x10 10 e-/bunch Bunch#/shot 1 ~ 20 bunches(2.8ns spacing) Bunch#/shot 1 ~ 10 bunches(5.6ns spacing) Rep.
Managed by UT-Battelle for the Department of Energy SNS MEBT : Beam Dynamics, Diagnostics, Performance. Alexander Aleksandrov Oak Ridge National Laboratory.
ESS DTL beam commissioning
Beam diagnostics control for J-PARC LINAC Guobao SHEN J-PARC Center Japan Atomic Energy Agency Mar
Household Items (Unit 2 たんご) *House and Rooms *Locations *Saying/asking where something is.
たくさんの人がいっしょに乗れる乗り物を 「公共交通」といいます バスや電車 と 自動車 の よいところ と よくない ところ よいところ と よくない ところ を考えてみよう!
日本語きほん文法の復習 Basic Japanese Grammar Review
January 5, 2004S. A. Pande - CAT-KEK School on SNS MeV Injector Linac for Indian Spallation Neutron Source S. A. PANDE.
Ho w to write ひらがな Left click the mouse to move through each of the slides. Place your mouse on each symbol to hear how it is said. When you see this.
Analysis MEMO Magnetic field shield for S-2S TOF detector 9Mar2015 Toshiyuki Gogami.
PROTON LINAC FOR INDIAN SNS Vinod Bharadwaj, SLAC (reporting for the Indian SNS Design Team)
21 Sep 2006 Kentaro MIKI for the PHENIX collaboration University of Tsukuba The Physical Society of Japan 62th Annual Meeting RHIC-PHENIX 実験における高横運動量領域での.
ICFA-HB 2004 Commissioning Experience for the SNS Linac A. Aleksandrov, S. Assadi, I. Campisi, P. Chu, S. Cousineau, V. Danilov, G. Dodson, J. Galambos,
B 04 How to Type in Japanese How do you TYPE in Japanese?
1 Injection tuning of ATF Design acceptance of the ATF-DR Emittance(x,y)3x10 -3 m Timing +/-350ps dE/E+/-1.5% To supply stable beams to ATF2, the injector.
HLab meeting 5/22/07 K. Shirotori. SP0 Beam decay background veto SP0 :  - from K - →  - +  0 Background  - is vetoed by detecting  rays from the.
Assignments: -Writing practice prompt due THUR. -Quiz signed.
Fiber target simulation for the S-2S experiment Toshiyuki Gogami 2015/10/17.
Event 8: The Old Lady スタート Start. ばあちゃんの質問に答えましょう ( Answer Baachan’s questions ) When the user clicks the help button, this instruction will appear in.
音読用 ICT 教材 サンプル フラッシュ型 文字が消える 文字が現れる 文字の色が変わる 職場体験では.
A Simulator for the LWA Masaya Kuniyoshi (UNM). Outline 1.Station Beam Model 2.Asymmetry Station Beam 3.Station Beam Error 4.Summary.
HES-HKS & KaoS meeting. Contents Different distorted initial matrices Distorted matrix sample 6 (dist6) Distorted matrix sample 7 (dist7) Distorted matrix.
雪 ゆき. 雪や こんこ ゆき.
LINAC4 emittance measurements BI Day Divonne, 24 th November 11/24/2011 B.Cheymol, E. Bravin, D. Gerard, U. Raich, F. Roncarolo BE/BI 1.
Warm Front End Concept A. Shemyakin PIP-II Machine Advisory Committee 9-11 March 2015.
3 MeV Measurements at Lianc4 1 Veliko Dimov (for the source and linac team) (J-B Lallement, J. Lettry, A. Lombardi, D. Fink)
Investigation of laser energy absorption by ablation plasmas
Kaori Umehara, Saeka Hataguchi, Asuka Fukunaga, Daisuke Yuzawa,
腎臓移植 腎臓移植の前に、ドナー両方の腎臓は機 能的に良好でなければならない。ドナー の両方の腎臓が機能的に健康であること を保証するために、多数の試験が行われ ている。
1- Short pulse neutron source
Ask Have ~ ? / How long ~ ? Answer these questions
Physics Design on Injector I
Radiation fields During 1st stage beam commissioning
Presentation transcript:

Lesson learned in Linac Commissioning Here I introduce 3 kinds of beam loss generated by following issues 1.Intra beam stripping (IBSt) in ACS 2.Dark current of an ion source 3.Beam accelerated by transient RFQ RF T. Maruta KEK/J-PARC

ACS Beam Loss σ x (mm) σ y (mm) We have observed continuous beam loss in ACS, and residual radiation is higher than our expectation. One reason is the property of current transformers. We have been investigating the source of beam loss particles for countermeasure. We measured the contribution of the Intra Beam Stripping (IBSt) courtesy 3 times RF frequency jump at SDTL to ACS. ⇒ longitudinal focusing becomes higher in ACS ⇒ Beam size at ACS is narrower than SDTL to suffer the equi-partitioning condition. IBSt is inversely proportional to the beam size. 50 MeV DTL 191 MeV DTL 191 MeV ACS 324 MHz972 MHz Design beam envelope Equi-partitioning condition

Intra Beam Stripping (IBSt) Beam size in ACS (Simulation) W/m W/m W/m W/m IBSt (Simulation) We prepared 4 kinds of optics w/ different T ratio; T= 1.3, 1.0 (default), 0.7 and 0.3. Peak current: 30 mA Pulse width : 500 us Repetition : 25 Hz Beam duty : 56 % The identical optics is applied to DTL – SDTL (T = 1.0). 3D matching in MEBT2. Measure the beam loss in ACS and beam profile at the L3BT entrance.

ACS BLM Signal Comp. at T = 0.7, 1.0 and 1.3 Simulation T = 0.7 : W/m T = 1.0 : W/m T = 1.3 : W/m R (T=0.7/T=1.0) = 0.77 R (T=1.3/T=1.0) = 1.23 The ratios of BLM signal of each T-ratio is well consistent w/ the simulation after ACS08. IBSt could be dominant source of the ACS beam loss. ACS BLM signal (signal saturation is corrected) Ratio of ACS BLM signal

Beam Loss by Ion Source Dark Current IS RFQ 50 MeV DTL 191 MeV SDTL 400 MeV ACS DB2 RCS DB1 Current transformer waveform (w/o chopping) Macro Pulse (100 us) Current transformer waveform (w/ chopping, duty 100%) 100 us Beam from RFQ Chopper RF Beam after chopper Dark current Macro pulse Lost in 3 GeV RCS Dark current exists before a macro pulse. Current is about 2 mA (4% of 50 mA). The dark current is partially scraped by the chopper, but RF width is not sufficient. Un-scraped dark current causes a beam loss in 3-GeV RCS. 60us50us 1mA Beam : 50 mA / 100 us Chopper Measured CT

Ion Source Dark Current Beam from RFQ Chopper RF Beam after chopper Dark current Macro pulse Lost in 3 GeV RCS 60us50us Beam from RFQ Chopper RF Beam after chopper Dark current Macro pulse 120us 10us 100 us 1mA The chopper RF timing is optimized, and then check the current transformer again. Extend former RF width to 120 us The chopper RF width of a former macro pulse is extended to fully cover the dark current. After the timing change, we again measure the CT waveform, and the dark current does not detected. The beam loss in RCS is drastically reduced.

L3BT_BLM55 L3BT_BLM57 Chopping Duty 100% Beam gate 0.5V Beam Loss at Macro Pulse End around BM1 H-H- p BLMP21C BLMP21B BLMP21B : For low energy H - (ex. no acceleration by ACS) BLMP21C : For H + detection Top view of BM1 Beam after RFQ Chopper RF (duty 100 %) ss 10 us IS RFQ 50 MeV DTL 191 MeV SDTL 400 MeV ACS DB2 RCS DB1 Small amount of beam exists after macro-pulse. This beam cannot be scraped by chopper. ⇒ beam property must be different from the main part. Insert carbon plates on beam line to intentionally loss 0.5V 10 us

Timing around Macro Pulse End LEBT RFQ RF chopper upstream ss Chopper RF (full chop mode) chopper downstream 10 us Present timing (chopping duty = 100%) beam at transient RFQ RF 1 st Arc: Chop 無し: マクロパルスより後ろに有意なロス 全 Chop : マクロパルスと、マクロパルス前 100us にロス。 21C の信号が高いので、陽子起因のロスが多いように見える。 Scraper Section: 全 Chop: マクロパルスより後ろに有意なロス ← RFQ RF のタイミングをずらすと、それにしたがってずれる ← 3us 以上ずらせば、完全に消える。 Lost in L3BT scraper Extinction level of this region looks worse than the beam in beam gate beam gate ss 10 us Proporsed timing (delay the RFQ RF end) Accelerated by nominal RF Lost in L3BT scraper beam gate After some studies, we found that the loss comes from the beam accelerated by transient RFQ RF

L3BT_BLM55 L3BT_BLM57 Beam Monitor Timing Chopped (duty 100%), RFQ timing shift : 0 us L3BT_BLM55 L3BT_BLM57 Beam Monitor Timing Chopped (duty 100%), RFQ timing shift : 3us Beam gate No significant beam loss is observed after +3 us shift. Beam Loss Comp. of Different RFQ RF Timing

Lesson Learned in Linac Commissioning After a replacement of linac elements (ex. front-end replacement) and beam power upgrade, new beam loss may appears. We have to pay attention to beam loss distribution in the 1 st commissioning. Time structure of beam loss is a good hint of source. (We normally monitor the integrated BLM signals) It is difficult to find the beam loss caused by timing in linac single commissioning. Communication with downstream accelerator is important.

Gate Timing Relating to Dark Current Beam from RFQ Arcing Modulation It is expected that the beam is extracted only when the modulation is on RFQ RF 800 us 650 us Ion Source Design (expectation) Reality Rise-up of macro pulse is determined by modulation 50 〜 500 us Dark Current Small fraction of un-modulated beam is inside the RFQ acceptance, and then accelerated to 400 MeV

Hoffman Stability Chart at ε x /ε z = 0.7