 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.

Slides:



Advertisements
Similar presentations
The 26g Al(p, ) 27 Si Reaction at DRAGON Heather Crawford Simon Fraser University TRIUMF Student Symposium July 27, 2005.
Advertisements

NuPECC - Milan Present and future of Laboratory Underground Nuclear Astrophysics Alba Formicola - Status of the D(, ) 6 Li measurement -Status of.
1 MICE Beamline: Plans for initial commissioning. Kevin Tilley, 16 th November. - 75days until commissioning Target, detectors, particle production Upstream.
The fission of a heavy fissile nucleus ( A, Z ) is the splitting of this nucleus into 2 fragments, called primary fragments A’ 1 and A’ 2. They are excited.
Progress on the 40 Ca(α,  ) 44 Ti reaction using DRAGON Chris Ouellet Supervisor: Alan Chen Experiment leader: Christof Vockenhuber ● Background on the.
Alpha Stucture of 12 B Studied by Elastic Scattering of 8 Li Excyt Beam on 4 He Thick Target M.G. Pellegriti Laboratori Nazionali del Sud – INFN Dipartimento.
Ion Beam Analysis techniques:
Direct measurement of 4 He( 12 C, 16 O)  reaction near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda, K. Nakano,
Low energy radioactive beams Carmen Angulo, CRC Louvain-la-Neuve, Belgium FINUPHY meetingLouvain-la-Neuve, Belgium3-4 May 2004 Recent highlights on nuclear.
15 N Zone 8 Zone 1 Zone 28 p Zone 1 Zone O Zone 1 Zone 4 Zone 8 Zone N 16 O p Reaction rates are used to determine relative abundance of elements.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Basic Measurements: What do we want to measure? Prof. Robin D. Erbacher University of California, Davis References: R. Fernow, Introduction to Experimental.
Status of TACTIC: A detector for nuclear astrophysics Alison Laird University of York.
1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Cross section measurements for analysis of D and T in thicker films Liqun Shi Institute of Modern Physics, Fudan University, Shanghai, , People’s.
RF background, analysis of MTA data & implications for MICE Rikard Sandström, Geneva University MICE Collaboration Meeting – Analysis session, October.
Astrophysics with DRAGON: The 26g Al (p,γ) 27 Si Reaction Heather Crawford a,1 for the DRAGON Collaboration b a Simon Fraser University, Burnaby, B.C.,
Direct measurement of 12 C + 4 He fusion cross section at Ecm=1.5MeV at KUTL H.Yamaguchi K. Sagara, K. Fujita, T. Teranishi, M. taniguchi, S.Liu, S. Matsua,
Measurement of 4 He( 12 C, 16 O)  reaction in Inverse Kinematics Kunihiro FUJITA K. Sagara, T. Teranishi, M. Iwasaki, D. Kodama, S. Liu, S. Matsuda, T.
Cross section measurements at LNL M.Mezzetto (INFN-Pd) on behalf of INFN-LNL: M. Cinausero, G. De Angelis,G. Prete.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
Proton resonance scattering of 7 Be H. Yamaguchi, Y. Wakabayashi, G. Amadio, S. Kubono, H. Fujikawa, A. Saito, J.J. He, T. Teranishi, Y.K. Kwon, Y. Togano,
Study of the 40 Ca(  ) 44 Ti reaction at stellar temperatures with DRAGON Christof Vockenhuber for the DRAGON collaboration Vancouver, B.C., Canada.
Depth Profiling with Low-Energy Nuclear Resonances H.-W. Becker, IAEA May 2011 CRP: Reference Database for Particle Induced Gamma-ray Emission (PIGE) Ruhr-University.
Lawrence Livermore National Laboratory Nicholas Scielzo Lawrence Fellow Physics Division, Physical Sciences LLNL-PRES Lawrence Livermore National.
Searching for the Low-Energy Resonances in the 12 C( 12 C,n) 23 Mg Reaction Cross Section Relevant for S-Process Nucleosynthesis Brian Bucher University.
Kinematics of  + n   p   0  p reaction Susumu Oda 2007/04/10-19.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
-NUCLEUS INTERACTIONS OPEN QUESTIONS and FUTURE PROJECTS Cristina VOLPE Institut de Physique Nucléaire Orsay, France.
Zagreb IP: Experimental nuclear physics inputs for thermonuclear runaway - NuPITheR Neven Soić, Ru đ er Bošković Institute, Zagreb, Croatia EuroGENESIS.
Pellet Charge Exchange Measurement in LHD & ITER ITPA Tohoku Univ. Tetsuo Ozaki, P.Goncharov, E.Veschev 1), N.Tamura, K.Sato, D.Kalinina and.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
Lesson 13 Nuclear Astrophysics. Elemental and Isotopic Abundances.
Studies of Helium proportional counters response on fast neutrons, at NCSR “Demokritos” M. Zamani, M. Manolopoulou, S. Stoulos, M. Fragopoulou School of.
Study of unbound 19 Ne states via the proton transfer reaction 2 H( 18 F,  + 15 O)n HRIBF Workshop – Nuclear Measurements for Astrophysics C.R. Brune,
ALNA- Accelerator Laboratory for Nuclear Astrophysics Underground Heide Costantini University of Notre Dame, IN, USA INFN, Genova, Italy.
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
This project is funded by the NSF through grant PHY , and the Universities of JINA. The Joint Institute for Nuclear Astrophysics Henderson DUSEL.
Applications of Nuclear Physics
ERNA: Measurement and R-Matrix analysis of 12 C(  ) 16 O Daniel Schürmann University of Notre Dame Workshop on R-Matrix and Nuclear Reactions in Stellar.
Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Experimental Nuclear Astrophysics: Key aspects & Open problems Marialuisa Aliotta School of Physics University of Edinburgh Nuclear Physics Autumn Retreat.
Ibrahim H. Albayrak, Hampton University Group Meeting Experiment Rosen07: Measurement of R =  L /  T on Deuterium in the Nucleon Resonance Region. 
Activities and Opportunities at the accelerator lab in Bochum H.-W. Becker, NUPECC Small Scale Facilities workshop, 7./8. Sep
Indirect measurements of the -3 keV resonance in the 13 C(α, n) 16 O reaction: the THM approach Marco La Cognata.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
Shuya Ota: Japan Atomic Energy Agency, Rutgers University H. Makii, T. Ishii, K. Nishio, S. Mitsuoka, I. Nishinaka : Japan Atomic Energy Agency M. Matos,
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
Bubble Chamber A novel technique for measuring thermonuclear rates at low energies Rashi TalwarAPS April Meeting 2016.
Relativistic Kinematics for the Binding Energy of Nuclear Reactions
Resonances in the 12C(α,γ)16O reaction
the s process: messages from stellar He burning
Laboratory for Underground Nuclear Astrophysics
Direct measurement of 4He(12C,16O)g reaction at KUTL*
Carbon, From Red Giants to White Dwarfs
Direct measurement of 12C + 4He fusion cross section at Ecm=1
Nucleosynthesis 12 C(
Vamos + Exogam Spectrometer
Recoil charge state distributions in 12C(a,g)16O at DRAGON
7Be neutrino line shifts in the sun.
Elastic alpha scattering experiments
Direct Measurement of the 8Li + d reactions of astrophysical interest
Presentation transcript:

 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear Measurements for Astrophysics October 23-24, 2006, Oak Ridge, Tennessee

12 C( ,  ) 16 O the Holy Grail of Nuclear Astrophysics e e 3 He( ,  ) 7 Be pp chain

ErEr DANGER OF EXTRAPOLATION ! non resonant process interaction energy E extrapolation or measurements ? direct measurement 0 S(E) LINEAR SCALE S(E)-FACTOR -E r sub-threshold resonance low-energy tail of broad resonance Danger of Extrapolation Important for Experiments Low energy High energy

ERNA - Experimental approach Pro & Cons purification separation A B C n+ detection A  coincidence detection Requirements beam purification 100% transmission for the selected charge state high suppression of the incident beam inverse kinematics (gas target) Advantages low background high detection efficiency measure  tot background free  ray spectra gas target Disadvantages difficult to do commissioning charge state beam intenity ? A different approach: recoil mass separator C

ERNA - Experimental approach projectiles + Recoils p rec = p proj momentum conservation Separation Detection & Identification Recoils projectiles focusing He target  -ray emission  Recoil cone  -Recoil Coincidences Minimum supression factor with  = 10nbarn, n target =1x10 18 at/cm² N proj / N recoils ~ 1x10 14

ERNA - Experimental approachSetup ion source dynamitron tandem accelerator ion beam purification He Gastarget singlet 60° magnet  E-E telescope recoil separation doublet analysing magnet recoil focussing Wien filter magnetic quadrupole multiplets triplet side FC

characteristics:  angular acceptance  32 mrad for 16 O at E lab =3.0 – 15.0 MeV for the total length of the gas target  energy acceptance  10% for 16 O at E lab =3.0 – 15.0 MeV  suppression of incident beam ( )·10 -2 (IC) =>  min < 1 nb  purification of incident beam <  resolution of ion chamber  250·A keV or combination  E-silicon strip detector  layout COSY Infinity (recoils fit in 4” beam tube)  field settings are not calculated, but tuned

Experimental approach: ERNA Gas target Gas pressure profile: 7 Li(  ) 7 Li + energy loss of: 14 N, 12 C, 7 Li

ERNA - Experimental approach Charge State Distributions measured for entire energy range but question about point of origin in the gas target → no equilibrium 4 He gas 12 C beam

ERNA - Experimental approach Setup Solution: a post-target-stripper to the separator ► First test with laser ablated carbon foil: 12 C( 12 C, 8 Be) 16 O ► Final configuration: Ar post-target stripper after the 4 He target 4 He Ar 3 He( ,  ) 7 Be no post-target-stripper – measure all charge states

Angular acceptance along the gas target ERNA - Experimental approach Setup 4 He gas 12 C beam separator central position upstream position beam diameter upstream position (energy acceptance) full angular acceptance  100 % transmission (better 3  ) over the total gas target length and full beam diameter

Angular acceptance along the gas target ERNA - Experimental approach Setup - + Simulation of recoil cone

12 C( ,  ) 16 O: E cm =1.3 MeV  rec = 26 mrad,  E/E = 10.8 %,  ≈ 150 pb ERNA - Experimental approach Angular Acceptance

Angular acceptance along the gas target Energy acceptance Change beam energy transmission  E / E 0 [ % ] experimental calculated ERNA - Experimental approach Setup

ERNA Motivation Helium Burning Main reactions: 3  12 C and 12 C(  ) 16 O Stellar Helium burning: 12 C(  ) 16 O 12 C/ 16 O abundance ratio Subsequent stellar evolution and nucleosynthesis but E 0 ~ 300 keV, very low cross section Accurate measurements at higher energy and extrapolation to E 0 are needed 12 C 4 He 16 O 4 He triple alpha 12 C(  ) 16 O Red Giant

ERNA  E/E Matrix 12 C(  ) 16 O E cm =2.5 MeV Suppression R~8*10 -12

ERNACross Section CurveRESULTS

ERNAastrophysical S FactorRESULTS

12 C( ,  ) 16 O the Holy Grail of Nuclear Astrophysics e e 3 He( ,  ) 7 Be pp chain

Explanation of Stars 1960‘s Davis, Fowler & Bahcall Homestake Experiment solar spy = solar neutrinos Neutrino spectroscopy ? Sun = calibrated source H Hydrogen Burning 4p  4 He e -

ERNA Motivation Neutrino Spectroscopy  (L  ) = 0.4 %  age  ) = 0.4 %  Z/H  ) = 3.3 %  (L  ) = 0.4 %  age  ) = 0.4 %  Z/H  ) = 3.3 %  p-p) = 2 %  3 He+ 3 He) = 6 %  3 He+ 4 He) = 15 %  7 Be+p) = 10 %  p-p) = 2 %  3 He+ 3 He) = 6 %  3 He+ 4 He) = 15 %  7 Be+p) = 10 % Influence of different sources of uncertainties on the neutrino flux

ERNA Motivation Neutrino Spectroscopy Influence of different sources of uncertainties on the neutrino experiment

two types of  rays are used to measure 3 He( ,  ) 7 Be cross section 7 Be 7 Li 3 He+ 4 He 2 1 E cm (MeV) 1.586MeV /2- 7/2- 3/2- 1/2- 3/2- 7/2- 00  478 11  42 9 Capture  -rays:  0,  1,  429 Delayed  - rays: : 7 Be decay:  % 89.48% T ½ =53.3d Q=

Summary for the S 34 (0) values

ERNA Acceptance 3 He( ,  ) 7 Be

ERNA  E/E Spectra 3 He( ,  ) 7 Be E cm =1.8 MeV Inverse kinematics

ERNAastrophysical S FactorRESULTS Preliminary result

 3 He(a,  ) 7 Be -  measurement (free & coincidences)  12 C( ,  ) 16 O -  measurement (jet gas target)  14 N(a,  ) 18 F  d(a,  ) 6 Li ERNA - future plans and other perspectives ERNA – present status  12 C( ,  ) 16 O E cm >1.9 MeV (1.3 MeV)  3 He(a,  ) 7 Be E cm >1.1 MeV (0.6 MeV)