1. Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solving Systems of Linear Equations in Three Variables 4 1.Determine.

Slides:



Advertisements
Similar presentations
§ 3.4 Matrix Solutions to Linear Systems.
Advertisements

4.3 Matrix Approach to Solving Linear Systems 1 Linear systems were solved using substitution and elimination in the two previous section. This section.
1 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 4-1 Systems of Equations and Inequalities Chapter 4.
Chapter 4 Section 2 Copyright © 2011 Pearson Education, Inc.
Lesson 8.1, page 782 Matrix Solutions to Linear Systems
Chapter 1 Section 1.2 Echelon Form and Gauss-Jordan Elimination.
Solving System of Linear Equations. 1. Diagonal Form of a System of Equations 2. Elementary Row Operations 3. Elementary Row Operation 1 4. Elementary.
HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Hawkes Learning Systems College Algebra.
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1 1 Section 2.2 The Multiplication Property of Equality Copyright © 2013, 2009, 2006 Pearson Education,
Matrix Solution of Linear Systems The Gauss-Jordan Method Special Systems.
1. Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Systems of Equations CHAPTER 9.1Solving Systems of Linear Equations Graphically.
1 1.1 © 2012 Pearson Education, Inc. Linear Equations in Linear Algebra SYSTEMS OF LINEAR EQUATIONS.
Chapter 7 Systems of Equations and Inequalities Copyright © 2014, 2010, 2007 Pearson Education, Inc Systems of Linear Equations in Three Variables.
Solving Systems of Linear Equations in Three Variables; Applications
Identifying Solutions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Systems and Matrices (Chapter5)
Copyright © 2011 Pearson, Inc. 7.3 Multivariate Linear Systems and Row Operations.
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Solving Systems of Equations by matrices
Euclidean m-Space & Linear Equations Row Reduction of Linear Systems.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
Three variables Systems of Equations and Inequalities.
Row rows A matrix is a rectangular array of numbers. We subscript entries to tell their location in the array Matrices are identified by their size.
8.1 Matrices and Systems of Equations. Let’s do another one: we’ll keep this one Now we’ll use the 2 equations we have with y and z to eliminate the y’s.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 1.
1. Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Systems of Equations CHAPTER 1Solving Systems of Linear Equations Graphically.
Chapter 6 Matrices and Determinants Copyright © 2014, 2010, 2007 Pearson Education, Inc Matrix Solutions to Linear Systems.
Chapter 4 Section 3 Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Solving Systems of Linear Equations by Elimination Solve linear systems by elimination. Multiply when using the elimination method. Use an alternative.
Copyright © 2015, 2011, 2007 Pearson Education, Inc. 1 1 Chapter 4 Systems of Linear Equations and Inequalities.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 5 Systems and Matrices Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Copyright © 2011 Pearson Education, Inc. Systems of Linear Equations and Inequalities CHAPTER 9.1Solving Systems of Linear Equations Graphically 9.2Solving.
Copyright © 2009 Pearson Education, Inc. CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 5 Systems and Matrices Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Triangular Form and Gaussian Elimination Boldly on to Sec. 7.3a… HW: p odd.
5 Systems and Matrices © 2008 Pearson Addison-Wesley. All rights reserved Sections 5.1–5.5.
Copyright © 2011 Pearson Education, Inc. Solving Linear Systems Using Matrices Section 6.1 Matrices and Determinants.
Matrices and Systems of Linear Equations
Copyright © 2009 Pearson Education, Inc. CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations.
 SOLVE SYSTEMS OF EQUATIONS USING MATRICES. Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley 9.3 Matrices and Systems of Equations.
Section 4Chapter 4. 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives Solving Systems of Linear Equations by Matrix Methods Define.
10.3 Systems of Linear Equations: Matrices. A matrix is defined as a rectangular array of numbers, Column 1Column 2 Column jColumn n Row 1 Row 2 Row 3.
Chapter 4 Section 3. Objectives 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Solving Systems of Linear Equations by Elimination Solve linear.
Slide Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley A set of equations is called a system of equations. The solution.
Slide Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley A set of equations is called a system of equations. The solution.
Matrices Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 A matrix is a rectangular array of real numbers. Each entry.
TH EDITION LIAL HORNSBY SCHNEIDER COLLEGE ALGEBRA.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall Chapter 5 More Work with Matrices
Copyright ©2015 Pearson Education, Inc. All rights reserved.
SOLVING SYSTEMS USING ELIMINATION 6-3. Solve the linear system using elimination. 5x – 6y = -32 3x + 6y = 48 (2, 7)
Slide Copyright © 2009 Pearson Education, Inc. 7.2 Solving Systems of Equations by the Substitution and Addition Methods.
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison- Wesley Systems of Equations in Three Variables Identifying Solutions Solving Systems.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Systems of Equations in Three Variables Identifying Solutions Solving Systems.
Section 5.3 MatricesAnd Systems of Equations. Systems of Equations in Two Variables.
Slide Copyright © 2009 Pearson Education, Inc. 7.4 Solving Systems of Equations by Using Matrices.
Chapter 5: Matrices and Determinants Section 5.5: Augmented Matrix Solutions.
Solving Systems of Linear Equations by Elimination; Applications Solve systems of linear equations using elimination. 2.Solve applications using.
Gaussian Elimination Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Gaussian elimination with back-substitution.
Linear Equations in Linear Algebra
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Solving Systems of Equations Using Matrices
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Systems of Linear Equations
Matrices and Systems of Equations
Lial/Hungerford/Holcomb/Mullins: Mathematics with Applications 11e Finite Mathematics with Applications 11e Copyright ©2015 Pearson Education, Inc. All.
Linear Equations in Linear Algebra
Matrices are identified by their size.
Presentation transcript:

1

Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solving Systems of Linear Equations in Three Variables 4 1.Determine if an ordered triple is a solution for a system of equations. 2.Understand the types of solution sets for systems of three equations. 3.Solve a system of three linear equations using the elimination method.

Slide 9- 3 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example Determine whether (2, –1, 3) is a solution of the system Solution In all three equations, replace x with 2, y with –1, and z with 3. x + y + z = (–1) + 3 = 4 4 = 4 TRUE 3 = 3 TRUE 2x – 2y – z = 3 2(2) – 2(–1) – 3 = 3 – 4x + y + 2z = –3 – 4(2) + (–1) + 2(3) = –3 –3 = –3 TRUE Because (2,  1, 3) satisfies all three equations in the system, it is a solution for the system.

Slide 9- 4 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example Solution Solve the system using elimination. We select any two of the three equations and work to get one equation in two variables. Let’s add equations (1) and (2): (1) (2) (3) (1) (2) (4) 2x + 3y = 8 Adding to eliminate z

Slide 9- 5 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Next, we select a different pair of equations and eliminate the same variable. Let’s use (2) and (3) to again eliminate z. (5) x – y + 3z = 8 Multiplying equation (2) by 3 4x + 5y = 14. 3x + 6y – 3z = 6 Now we solve the resulting system of equations (4) and (5). That will give us two of the numbers in the solution of the original system, 4x + 5y = 14 2x + 3y = 8 (5) (4)

Slide 9- 6 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley We multiply both sides of equation (4) by –2 and then add to equation (5): Substituting into either equation (4) or (5) we find that x = 1. 4x + 5y = 14 –4x – 6y = –16, –y = –2 y = 2 Now we have x = 1 and y = 2. To find the value for z, we use any of the three original equations and substitute to find the third number z.

Slide 9- 7 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Let’s use equation (1) and substitute our two numbers in it: We have obtained the ordered triple (1, 2, 3). It should check in all three equations. x + y + z = z = 6 z = 3. The solution is (1, 2, 3).

Slide 9- 8 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solving Systems of Three Equations Using Elimination 1. Write each equation in the form Ax + By+ Cz = D. 2. Eliminate one variable from one pair of equations using the elimination method. 3. If necessary, eliminate the same variable from another pair of equations. 4. Steps 2 and 3 result in two equations with the same two variables. Solve these equations using the elimination method. 5. To find the third variable, substitute the values of the variables found in step 4 into any of the three original equations that contain the third variable. 6. Check the ordered triple in all three of the original equations.

Slide 9- 9 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example Solution Solve the system using elimination. The equations are in standard form. (1) (2) (3) (2) (3) (4) 3x + 2y = 4 Adding Eliminate z from equations (2) and (3).

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Eliminate z from equations (1) and (2). Multiplying equation (2) by 6 (1) (2) (3) Adding 15x + 15y = 15 Eliminate x from equations (4) and (5). 3x + 2y = 4 15x + 15y = 15 Multiplying top by  5  15x – 10y =  20 15x + 15y = 15 Adding 5y =  5 y =  1 Using y =  1, find x from equation 4 by substituting. 3x + 2y = 4 3x + 2(  1) = 4 x = 2 continued

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley continued Substitute x = 2 and y =  1 to find z. x + y + z = 2 2 – 1 + z = z = 2 z = 1 The solution is the ordered triple (2,  1, 1). (1) (2) (3)

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example At a movie theatre, Kara buys one popcorn, two drinks and 2 candy bars, all for $12. Rebecca buys two popcorns, three drinks, and one candy bar for $17. Leah buys one popcorn, one drink and three candy bars for $11. Find the individual cost of one popcorn, one drink and one candy bar. Understand We have three unknowns and three relationships, and we are to find the cost of each. Plan Select a variable for each unknown, translate the relationship to a system of three equations, and then solve the system.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley continued Execute: p = popcorn, d = drink, and c = candy Relationship 1: one popcorn, two drinks and two candy bars, cost $12 Translation: p + 2d + 2c = 12 Relationship 2: two popcorns, three drinks, and one candy bar cost $17 Translation: 2p + 3d + c = 17 Relationship 3: one popcorn, one drink and three candy bars cost $11 Translation: p + d + 3c = 11

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley continued Our system: Choose to eliminate p: Start with equations 1 and 3. Choose to eliminate p: Start with equations 1 and 2.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley continued Use equations 4 and 5 to eliminate d. Substitute for c in d – c = 1 Substitute for c and d in p + d + 3c = 11 p (1.5) = 11 p + 7 = 11 p = 4 The cost of one candy bar is $1.50. The cost of one drink is $2.50. The cost of one popcorn is $4.00.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Determine if (2, –5, 3) is a solution to the given system. a) Yes b) No

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Determine if (2, –5, 3) is a solution to the given system. a) Yes b) No

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solve the system. a) (–2, 2, –5) b) (–5, 2, –2) c) (–2,  5, 2) d) no solution

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solve the system. a) (–2, 2, –5) b) (–5, 2, –2) c) (–2,  5, 2) d) no solution

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley A company makes 3 types of cable. Cable A requires 3 black, 3 white, and 2 red wires. B requires 1 black, 2 white, and 1 red. C requires 2 black, 1 white, and 2 red. They used 100 black, 110 white and 90 red wires. How many of each cable were made? a) 10 cable A, 30 cable B, 20 cable C b) 20 cable A, 30 cable B, 10 cable C c) 10 cable A, 103 cable B, 20 cable C d) 10 cable A, 30 cable B, 93 cable C

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley A company makes 3 types of cable. Cable A requires 3 black, 3 white, and 2 red wires. B requires 1 black, 2 white, and 1 red. C requires 2 black, 1 white, and 2 red. They used 100 black, 110 white and 90 red wires. How many of each cable were made? a) 10 cable A, 30 cable B, 20 cable C b) 20 cable A, 30 cable B, 10 cable C c) 10 cable A, 103 cable B, 20 cable C d) 10 cable A, 30 cable B, 93 cable C

Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solving Systems of Linear Equations Using Matrices Write a system of equations as an augmented matrix. 2.Solve a system of linear equations by transforming its augmented matrix to echelon form.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Matrix: A rectangular arrow of numbers. The following are examples of matrices: The individual numbers are called elements.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley The rows of a matrix are horizontal, and the columns are vertical. column 1column 2column 3 row 1 row 2 row 3

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Augmented Matrix: A matrix made up of the coefficients and the constant terms of a system. The constant terms are separated from the coefficients by a dashed vertical line. Let’s write this system as an augmented matrix:

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Row Operations The solution of a system is not affected by the following row operations in its augmented matrix: 1. Any two rows may be interchanged. 2. The elements of any row may be multiplied (or divided) by any nonzero real number. 3. Any row may be replaced by a row resulting from adding the elements of that row (or multiples of that row) to a multiple of the elements of any other row.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Echelon form: An augmented matrix whose coefficient portion has 1s on the diagonal from upper left to lower right and 0s below the 1s.

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solution Example Solve the following linear system by transforming its augmented matrix into echelon form. We write the augmented matrix. We perform row operations to transform the matrix into echelon form. 3R 2 + R 1

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley The resulting matrix represents the system: R 2  10 continued Since y = 1, we can solve for x using substitution. The solution is (2, 1). 3x + 1 = 7 3x + y = 7 3x = 6 x = 2

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example Solution Write the augmented matrix. Use the echelon method to solve

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Our goal is to transform into the form Interchange Row 1 and Row 2 –2R 1 + R 2 continued

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley –R 2 + R 3 (1/3)R 2 R 1 + R 3 (1/3)R 3 continued

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley z = –1. Substitute z into y – z = 2 y –(  1) = 2 y + 1 = 2 y = 1 continued Substitute y and z into x – y + z = 1 x – 1 – 1 = 1 x – 2 = 1 x = 3 The solution is (3, 1, –1).

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Replace R 2 in with R 1 + R 2. a)b) c)d)

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Replace R 2 in with R 1 + R 2. a)b) c)d)

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solve by transforming the augmented matrix into echelon form. a) (2, 1,  3) b) (  3, 1, 2) c) (  3, 2, 1) d) No solution

Slide Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Solve by transforming the augmented matrix into echelon form. a) (2, 1,  3) b) (  3, 1, 2) c) (  3, 2, 1) d) No solution