Semester Project: Linear Collider Beam Test Data Analysis PHYS 5326 Spring 2007 Jacob Smith
The Small Picture Standard Model predicts and arranges particles SLAC (Ψ/J) Brookhaven (J/Ψ) Argonne (very busy) Fermilab (top quark) CERN (Ws and Zs, Higgs?) Where does the mass come from? (Higgs) ILC High Energy Electron Positron Collider Calorimetry requires good (high) resolution
The Detector Race, SiD Four Detector Concepts GLD Concept LDC-Large Gaseous Tracking Sid-Silicon Detector Concept A Fourth Detector Concept Detector consists of sectors for measurement of specific processes Gas Electron Multiplier (GEM) calorimeter for the hadronic (HCAL) section
Gas Electron Multiplier Foils GEM Foil Cu clad kapton Consists of small holes Electric field due to potential difference across foil accelerates electrons from ionized gas Charge amplification occurs in holes Double GEM provides optimum gain 70 m 140 m Invented by Fabio Sauli/CERN From CERN-open , A. Sharma Section of 30x30 cm UTA GEM foil
80:20 Ar:CO2 Cathode-Anode ΔV=2100 V ΔV=415 V
GEM Development Timeline Readout Electronics FunctionInstitution KPix chipAnalogSLAC DCAL chipDigitalArgonne Anode Board w/ Preamp AnalogUTA- Fermilab Implement 100 ch readout using new DAQ electronics, PC board, uses LabView (Carlos-UTA) Designing and Testing Signal Shaper to incorporate Fermi Pre- Amps with DAQ electronics New GEM chamber designs for SLICE test PAST PRESENT FUTURE SLICE Test Gas Mixture, HV, & Gain Efficiency Single chamber with one readout Single chamber with multiple simultaneous readouts Test Beam at Fermi National Laboratory 1 st Quarter 2007 SLICE test DCAL and KPix on GEM Argonne RPC w/DCAL Meter Cube Stack using Double GEM – Beam Test
Tests of detector Electronics pretests ADC needs a readable signal from detector Analysis depends on reliability of electronics Efficiency Correlation between scintillator and detector Multiplicity Cross talk between readout pads (tiles)
Tools for Analysis - Root Root Read in asciII file format Use root tools Create correlation histograms from nTuples Software controlled thresholds
{ // example of macro to read data from an ascii file and // create a root file with an histogram and an ntuple. gROOTgROOT->Reset();Reset #include "Riostream.h" ifstream in;ifstream // we assume a file basic.dat in the current directory // this file has 3 columns of float datafloat in.open("basic.dat"); Float_t x,y,z;Float_t Int_t nlines = 0;Int_t TFile *f = new TFile("basic.root","RECREATE");TFile TH1F *h1 = new TH1F("h1","x distribution",100,-4,4);TH1F TNtuple *ntuple = new TNtuple("ntuple","data from ascii file","x:y:z"); while (1) { in >> x >> y >> z;TNtuple if (!in.good()) break; if (nlines < 5) printf("x=%8f, y=%8f, z=%8fn",x,y,z); h1->Fill(x); ntuple->Fill(x,y,z); nlines++; } printf(" found %d pointsn",nlines); in.close(); f->Write(); } Event23388 ch Event23389 ch Event23390 ch Event23391 ch Event23392 ch Event23393 ch Event23394 ch Event23395 ch Event23396 ch Event23397 ch Event23398 ch Event23399 ch Event23400 ch Event23401 ch Event23402 ch Event23403 ch Event23404 ch Event23405 ch Event23406 ch Event23407 ch Event23408 ch Event23409 ch Event23410 ch Event23411 ch Event23412 ch Event23413 ch Event23414 ch Event23415 ch Event23416 ch Event23417 ch Event23418 ch Event23419 ch Read Data (ASCI) Files 1 Event0 ch Event1 ch Channel Gain Queue Event2 ch Event3 ch Event4 ch Event5 ch Event6 ch Event7 ch Event8 ch Event9 ch Event10 ch Event11 ch Event12 ch Event13 ch Event14 ch Event15 ch Event16 ch Event17 ch Event18 ch Event19 ch Event20 ch Event21 ch Event22 ch Event23 ch Event24 ch Event25 ch Event26 ch Event27 ch Event28 ch Event29 ch
Plans before Fermilab Test 1. Work with peers on re-familiarization of necessary programming tools 2. Use Arnab’s example Root files and nTuples to create single histograms, correlation histograms and normalization histograms 3. Commission GEM readout electronics taking advantage of Root functionality using data files from GEMview program 4. Create development tools for efficiency and multiplicity test using Root