George A. Souliotis Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece and Cyclotron.

Slides:



Advertisements
Similar presentations
Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294 Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires.
Advertisements

Production of rare nuclear species with proton and heavy ion beams in various regimes Martin Veselský Institute of Physics, Slovak Academy of Sciences,
Isospin dependence of nucleus-nucleus collisions
Multinucleon Transfer Reactions – a New Way to Exotic Nuclei? Sophie Heinz GSI Helmholtzzentrum and Justus-Liebig Universität Gießen Trento, May ,
Nucleon knockout reactions with heavy nuclei Edward Simpson University of Surrey Brighton PRESPEC Meeting 12 th January 2011.
Yoshitaka FUJITA (Osaka Univ.) Hirschegg Workshop /2006, Jan GT (  ) : Important weak response GT transitions of Astrophysics Interest.
Estimation of production rates and secondary beam intensities Martin Veselský, Janka Strišovská, Jozef Klimo Institute of Physics, Slovak Academy of Sciences,
Neutron Number N Proton Number Z a sym =30-42 MeV for infinite NM Inclusion of surface terms in symmetry.
George A. Souliotis Collaborators: M. Veselsky, G. Chubarian, L. Trache, A. Keksis, E. Martin, D.V. Shetty, S.J. Yennello Recent research results presented.
EURISOL workshop, ECT* Trento, Jan Two-component (neutron/proton) statistical description of low-energy heavy-ion reactions E. Běták & M.
Preliminary results from a study of isospin non-equilibrium E. Martin, A. Keksis, A. Ruangma, D. Shetty, G. Souliotis, M. Veselsky, E. M. Winchester, and.
Fragment Isospin as a Probe of Heavy-Ion Collisions Symmetry term of EOS Equilibration “Fractionation” – inhomogeneous distribution of isospin Source composition.
For more information about the facility visit: For more information about our group visit:
Using GEMINI to study multiplicity distributions of Light Particles Adil Bahalim Davidson College Summer REU 2005 – TAMU Cyclotron Institute.
APS-DNP Fall20041 Design Studies for RIA Fragment Separators A.M. Amthor National Superconducting Cyclotron Laboratory, Michigan State University Department.
Spectroscopy and lifetime measurements at ReA12 Hiro IWASAKI (NSCL/MSU) 7/12/2014Recoil Separator for ReA12 workshop1.
Germany's United States 2 Germany 0 FIFA Women’s World Cup Semifinal.
E432a: Decay of Highly Excited Projectile-like Fragments Formed in dissipative peripheral collisions at intermediate energies 1.Understanding thermodynamic.
Investigations of nuclear equation of state in nucleus- nucleus collisions and fission Martin Veselsky Institute of Physics, Slovak Academy of Sciences,
Zbigniew Chajęcki National Superconducting Cyclotron Laboratory Michigan State University Probing reaction dynamics with two-particle correlations.
- Mid-rapidity emission in heavy ion collisions at intermediate energies - Source reconstruction - Free nucleon multiplicities - Neutron/proton ratio of.
Reaction mechanisms in transport theories: a test of the nuclear effective interaction Maria Colonna INFN - Laboratori Nazionali del Sud (Catania) NN2012.
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Tensor force induced short-range correlation and high density behavior of nuclear symmetry energy Chang Xu ( 许 昌 ) Department of Physics, Nanjing Univerisity.
Peripheral collisions as a means of attaining high excitation –Velocity dissipation is key quantity R. Yanez et al, PRC (in press) Proximity emission as.
Neutron transfer reactions at large internuclear distances studied with the PRISMA spectrometer and the AGATA demonstrator.
Incomplete fusion studies near Coulomb barrier Pragya Das Indian Institute of Technology Bombay Powai, Mumbai , India.
Recent results on the symmetry energy from GANIL A.Chbihi GANIL Why studying E sym in Fission Extracting E sym from isotopic distribution of FF Influence.
Nuclear deformation in deep inelastic collisions of U + U.
J. Su( 苏军 ) and F.S. Zhang( 张丰收 ) College of Nuclear Science and Technology Beijing Normal University, Beijing, China Tel: ,
Summary of EOS working group Z. Chajecki,B. Tsang Additional contributions from: Garg, Brown, Pagano Neutron stars HICs, Structure Neutron skin Tan Ahn.
Probing the density dependence of symmetry energy at subsaturation density with HICs Yingxun Zhang ( 张英逊 ) China Institute of Atomic Energy JINA/NSCL,
Probing the nuclear EOS with fragment production Maria Colonna Laboratori Nazionali del Sud (Catania)
Ln(R 12 ) N Alan McIntosh, Yennello Research Group, TAMU-CI. Nuclear Physics Town Meeting, Aug 2014, College Station, TX Asymmetry Dependence of Thermodynamic.
Pion productions in mass asymmetric 28 Si+In reactions at 400, 600, 800 MeV/nucleon Tetsuya MURAKAMI Department of Physics Kyoto University Based on Mr.
BNU The study of dynamical effects of isospin on reactions of p Sn Li Ou and Zhuxia Li (China Institute of Atomic Energy, Beijing )
Status of the Subtask 6 Heavy ion reactions in the Fermi-energy domain M. Veselsky, IoP SASc Bratislava Main.
Motivation Current status Outlook This work was supported in part by: The Robert A. Welch Foundation: Grant Number A-1266 and, The Department of Energy:
Neutron enrichment of the neck-originated intermediate mass fragments in predictions of the QMD model I. Skwira-Chalot, T. Cap, K. Siwek-Wilczyńska, J.
Probing the symmetry energy with isospin ratio from nucleons to fragments Yingxun Zhang( 张英逊 ) China Institute of Atomic Energy The 11 th International.
Charge Equilibration Dynamics: The Dynamical Dipole Competition of Dissipative Reaction Mechanisms Neck Fragmentation M.Di Toro, PI32 Collab.Meeting, Pisa.
Isospin study of projectile fragmentation Content 1 、 Isospin effect and EOS in asymmetry nuclei 2 、 Isotope Yields in projectile ragmentation 3 、 Summary.
N/Z Dependence of Isotopic Yield Ratios as a Function of Fragment Kinetic Energy Carl Schreck Mentor: Sherry Yennello 8/5/2005 J. P. Bondorf et al. Nucl.
High-resolution experiments on nuclear fragmentation at the FRS at GSI M. Valentina Ricciardi GSI Darmstadt, Germany.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
Content 1.Introduction 2.Statistical Multifragmentation Model 3.Angular momentum and Coulomb effects for hot fragments in peripheral HIC at Fermi energies.
Isovector reorientation of deuteron in the field of heavy target nuclei The 9th Japan-China Joint Nuclear Physics Symposium (JCNP 2015) Osaka, Japan, Nov.
Z.Q. Feng( 冯兆庆 ), W.F. Li( 李文飞 ), Z.Y. Ming( 明照宇 ), L.W. Chen( 陈列文 ), F. S. Zhang ( 张丰收 ) Institute of Low Energy Nuclear Physics Beijing Normal University.
Observation of new neutron-deficient multinucleon transfer reactions
Hua Zheng a and Aldo Bonasera a,b a)Cyclotron Institute, Texas A&M University b)LNS-INFN, Catania-Italy Density and Temperature of Fermions.
In-medium properties of nuclear fragments at the liquid-gas phase coexistence International Nuclear Physics Conference INPC2007 Tokyo, Japan, June 3-8,
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Subtask 6 Heavy-ion reactions in the Fermi- energy domain Participants: IoP Task leader: Martin Veselsky
Physics at the extremes with large gamma-ray arrays Lecture 3 Robert V. F. Janssens The 14 th CNS International Summer School CNSSS15 Tokyo, August 26.
Tetsuya MURAKAMI For SAMURAI-TPC Collaboration Physics Using SAMURAI TPC.
Production mechanism of neutron-rich nuclei in 238 U+ 238 U at near-barrier energy Kai Zhao (China Institute of Atomic Energy) Collaborators: Zhuxia Li,
Search for direct evidence of tensor interaction in nuclei = high momentum component in nuclei = TERASHIMA Satoru 寺嶋 知 Depart. of Nuclear Science and Technology,
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Lecture 3 1.The potential energy surface of dinuclear system and formation of mass distribution of reaction products. 2.Partial cross sections. 3. Angular.
Oct. 16 th, 2015, Yonsei. RAON 2 Far from Stability Line 3.
Experimental Reconstruction of Primary Hot Fragment at Fermi Energy Heavy Ion collisions R. Wada, W. Lin, Z. Chen IMP, China – in JBN group.
Constraints on E sym (  )-L from RIB induced reactions…and more Zach Kohley NSCL/MSU NuSYM14 July 7, 2014.
Understanding the Isotopic Fragmentation of a Nuclear Collision
Transverse and elliptic flows and stopping
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
Energy Dependence of the Isotopic Composition in Nuclear Fragmentation
Jiansong Wang for NIMROD Collaboration
Isospin observables Observables
Peripheral collisions Hans-Jürgen Wollersheim
Reaction Dynamics in Near-Fermi-Energy Heavy Ion Collisions
Presentation transcript:

George A. Souliotis Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece and Cyclotron Institute, Texas A&M University, College Station, Texas, USA International Workshop on Nuclear Dynamics and Thermodynamics, in honor of Prof. Joe Natowitz TAMU, College Station, Aug Studies of N/Z equilibration via Heavy-Residue Isoscaling

BigSol Setup at TAMU: Sept BigSol Setup at TAMU: Sept. 2002

BigSol Line results: Rare Isotope Production ( Sept.-Oct. 2003) Example of Z-A distribution of fragments from 64 Ni(25MeV/u)+ 64 Ni B  =1.473, I BigSol =79.3 A Angular acceptance: deg. A Z Z A Neutron-Rich fragments from 64 Ni (25MeV/u) + 64 Ni (4.0mg/cm 2 ) B  =1.900 Tm, I BigSol =102.5 A i beam = 1 pnA, 4 hour run Angular acceptance: deg. -1p+1n -2p+2n -4p Co Fe Mn Cr

Experimental work at Texas A&M: deep inelastic collisions below the Fermi energy: 86 Kr(25MeV/nucleon) + 64 Ni, 124 Sn PRL 91, (2003) PRC 84, (2011) 86 Kr(15MeV/nucleon) + 64 Ni, 124 Sn PRC 84, (2011) Findings: Peripheral collisions: enhanced production of n-rich nuclei : Heavy Residues as probes of nuclear dynamics and EOS: Heavy-residue isoscaling: Heavy-residue isoscaling: PRC 68, (2003) PRC 73, (2006) PRC 73, (2006) N/Z equilibration: PLB 588, 35 (2004) Present work: Heavy residue Isoscaling in 15 MeV/nucleon reactions Evolution of the N/Z w.r.t. to TKEL (~ degree of dissipation) Comparisons with the DIT and CoMD models. Overview of Heavy-Residue work :

Collisions between Heavy Ions at Fermi Energies (10<E/A < 40MeV) b: impact parameter θ: scattering angle Approaching phase: Target (Z t,A t ) θ b Projectile (Z p,A p ) Neutrons Protons Overlap (interaction) phase: exchange of nucleons: Deep Inelastic Transfer (DIT) Model L. Tassan-Got and C. Stephan, Nucl. Phys. A 524, 121 (1991) excited projectile-like fragment (PLF) or quasi-projectile excited target-like fragment (TLF) or quasi-target Grazing angle, θ gr : nuclei in touching configuration

The Process of N/Z Transport * and Equilibration 112 Sn Sn Kr Kr N/Z = 1.40 N/Z = 1.48 N/Z = 1.40 N/Z = 1.24 Projectile Target Excited Projectile-like Fragment (PLF) or Quasi-projectile (N/Z) eq = 1.44 (N/Z) eq = 1.30 *or isospin diffusion Nucleon exchange: Deep Inelastic Transfer (DIT) Model L. Tassan-Got and C. Stephan, Nucl. Phys. A 524, 121 (1991)

*M. Papa, A. Bonasera et al., Phys. Rev. C 64, (2001) Microscopic Calculations: Constrained Molecular Dynamics (CoMD)* CoMD : Quantum Molecular Dynamics model (Semiclassical)  Nucleons are considered as Gaussian wavepackets  N-N effective interaction ( Skyrme-type with K = 200 )  Several forms for N-N symmetry potential V sym (ρ)  Pauli principle imposed (via a phase-space ‘constraint’ algorithm )  Fragment recognition algorithm (R min = 3.0 fm) Neutrons Protons CoMD Evolution of 86 Kr Nucleus: t = fm/c Δt = 10 fm/c z 86 Kr 36 50

CoMD Calculations: 86 Kr (15 MeV/nucleon) Sn CoMD: Constraint Molecular Dynamics; M. Papa, A. Bonasera, Phys. Rev. C 64, (2001) Neutrons Protons 86 Kr Sn Peripheral Collision b = 10 fm t = fm/c Δt = 10 fm/c z z b = 8 fm t = fm/c Δt = 10 fm/c 86 Kr Sn z Semi-Peripheral Collision z

Si Telescope E r ΔE PPAC1 Start T,X,Y Production Target D1D2 Wien Filter Q1 Q2 Q3 Q4 Q5 Dispersive Image Final Achromatic Image Rotatable Arm Reaction Angle: 0-12 o (selectable) PPAC2 Stop T, X,Y MARS Acceptances: Angular: 9 msr Momentum: 4 % Βρ = mυ/Q Separation Stage I Separation Stage II D3 MARS Recoil Separator and Setup for Heavy-Residue / RIB Studies* K500 Beam *G. A. Souliotis et al., Nucl. Instr. Methods B, 266, 4692 (2008) and references therein

Extracted physical quantities: Velocity, Energy loss, Total Energy Mass-to-charge ratio: A/Q B  ~ A/Q   Atomic Number Z Z ~  ΔE 1/2 Ionic charge Q Q ~ f(E, , B  ) Mass number A A = Q int  A/Q Reconstructed: Fragment Yield Distribution Y(Z, A, υ) Experimental Details Reactions studied with MARS: Δθ = o 86 Kr 22+ (15 MeV/u, 5 pnA) + 64 Ni, 58 Ni (  gr ~ 6 o ) Δθ = o 86 Kr Sn, 112 Sn (  gr ~ 9 o )

Experimental Mass Distributions: 86 Kr (15 MeV/u) + 64,58 Ni* Large cross sections of n- pickup products -6p - 3p -2p -1p -5p 34 Se 33 As 30 Zn 31 Ga 32 Ge 35 Br -4p 23 l 86 Kr + 64 Ni (15 MeV/u) l 86 Kr + 58 Ni (15 MeV/u) * G. A. Souliotis et al., Phys. Rev. C 84, (2011)

Comparison of calculations with data: 86 Kr (15 MeV/nucleon) + 64 Ni * P.N. Fountas, G.A. Souliotis et al., in preparation 86 Kr + 64 Ni (15 MeV/u)* DIT/SMM DITm/SMM DIT : L. Tassan-Got, C. Stephan, Nucl. Phys. A 524, 121 (1991) DITm: M. Veselsky, G.A. Souliotis, Nucl. Phys. A 765, 252 (2006) SMM: Statistical Multifragmentation Model: A. Botvina et al., Phys. Rev. C 65, (2002); Nucl. Phys. A 507, 649 (1990) 35 Br 34 Se 33 As 32 Ge 31 Ga 30 Zn *data: G.A. Souliotis et al., PRC 84, (2011)

Comparison: Data, Calculations: 86 Kr (15 MeV/nucleon) + 64 Ni *data: G.A. Souliotis et al., Phys. Rev. C 84, (2011) CoMD: Constrained Molecular Dynamics: M.Papa et. al., Phys. Rev. C 64, (2001) GEMINI: Binary Decay Code: R. Charity, Nucl. Phys. A 483, 391 (1988) SMM: Statistical Multifragmentation Model: A. Botvina et al., Phys. Rev. C 65, (2002); Nucl. Phys. A 507, 649 (1990) 86 Kr + 64 Ni (15 MeV/u)* CoMD/SMM CoMD/GEMINI 35 Br 34 Se 33 As 32 Ge 31 Ga 30 Zn * P.N. Fountas, G.A. Souliotis et al., in preparation

Scaling of Yield Ratios: 15MeV/nucleon data* R 21 (N,Z) = Y 2 /Y 1 R 21 = C exp ( α N ) 86 Kr+ 64 Ni, 58 Ni data at 4 o (  gr =6.0 o ) 86 Kr+ 124 Sn, 112 Sn data at 7 o (  gr =9.0 ο ) *G. A. Souliotis et al., in preparation

Isoscaling Parameter α : 15MeV/u data** ○ 86 Kr+ 64 Ni, 58 Ni ( 4 o data) R 21 = C exp ( α N ) ● 86 Kr+ 124 Sn, 112 Sn ( 7 o data) α = 4 C sym /T ( (Z/A) 1 2 – (Z/A) 2 2 ) Quasi-projectiles 1: n-poor 2:nrich M. B. Tsang et al. Phys. Rev. C 64, (2001) A.S. Botvina et al. Phys. Rev. C 65, (2002) P. Marini et al, Phys. Rev. C 85, (2012) * * **G. A. Souliotis et al., (in preparation)

Velocity, TKEL, E* vs Z 15MeV/u data** ○ 86 Kr+ 64 Ni, 58 Ni ( 4 o data) ● 86 Kr+ 124 Sn, 112 Sn ( 7 o data) Peripheral collision: t interaction short Semi-peripheral collisions: t interaction longer **G. A. Souliotis et al., (in preparation)

Residues: 86 Kr (15 MeV/u) + 64,58 Ni DIT CoMD (asy-stiff) CoMD (asy-soft) 86 Kr+ 64 Ni 86 Kr+ 58 Ni MARS Isoscaling data* Δ(Z/A) 2 = (Z/A) (Z/A) 2 2 = α T / (4 C sym ) DIT: Deep Inelastic Transfer: L. Tassan-Got, Nucl. Phys. A 524, 121 (1991) CoMD: Constraint Molecular Dynamics * G.A. Souliotis et al. (in preparation) Fermi gas: T 2 = K 0 (  /  o ) 2/3  * K 0 : inv. lev. dens. param. at  o (K 0 = 12 ) Assume QP at normal density  =  o C sym =23 MeV

Residues: 86 Kr (15 MeV/u) + 124,112 Sn DIT CoMD (asy-stiff) CoMD (asy-soft) 86 Kr+ 124 Sn 86 Kr+ 112 Sn MARS Isoscaling data* Δ(Z/A) 2 = (Z/A) (Z/A) 2 2 = α T / (4 C sym )

α,V,TKEL, E* vs Z 25MeV/u data** ● 86 Kr+ 124 Sn, 112 Sn ( 4 o data) Peripheral collision: t interaction short Semi-peripheral collisions: t interaction long **G. A. Souliotis et al., PLB 588, 35 (2004)

Residues: 86 Kr (25 MeV/u) + 124,112 Sn DIT CoMD (asy-stiff) CoMD (asy-soft) 86 Kr+ 124 Sn 86 Kr+ 112 Sn MARS Isoscaling data: G.A.Souliotis et al. PRC 68, (2003) Δ(Z/A) 2 = (Z/A) (Z/A) 2 2 = α T / (4 C sym )

Interaction time vs TKEL : CoMD calculation ● 86 Kr+ 124 Sn, 112 Sn ( 25 MeV/u) ● 86 Kr+ 124 Sn, 112 Sn ( 15 MeV/u) ● 86 Kr+ 64 Ni, 58 Ni ( 15MeV/u) ● 40 Ar+ 64 Ni, 58 Ni ( 15MeV/u) TKEL/TKEL max = 1- exp(-t/τ) τ ~ 150 fm/c

FAUST/Q-Triplet Setup at TAMU* FAUST/Q-Triplet Setup at TAMU* * Paul Cammarata et al, ( SJYgroup )

● Study of heavy-residue isoscaling from peripheral collisions. Information on N/Z transport and equilibration via the correlation: Δ vs TKEL ● Microscopic calculations of peripheral collisions with CoMD. No sensitivity to V sym (ρ) found in the Δ vs TKEL correlation * TAMU Cyclotron Upgrade, see : Summary and Conclusions Extension of experimental studies using neutron-rich RIBs from TAMU RIB Upgrade*, SPES at Legnaro, SPIRAL-II at GANIL and other facilities Plans for future work: ● Detailed comparisons with the theoretical codes ( DIT, CoMD,…. ) ● Experimental measurements of 15 MeV/nucleon reactions with the TAMU FAUST/Q-Triplet system (reconstruct QP).

Collaborators M. Veselsky, S. Galanopoulos, Z. Kohley, A. McIntosh, L.W. May, B.C. Stein, S.J. Yennello Special thanks to: A. Bonasera, TAMU and INFN, Catania, Italy, A. Botvina, FIAS, Frankfurt, Germany This work was supported in part by: The Robert A. Welch Foundation: Grant Number A-1266 and, The Department of Energy: Grant Number DE-FG03-93ER40773 Acknowledgements:

END of Talk : Additional material here:

Peripheral Collisions: 86 Kr Sn Calculations with a Thomas-Fermi code: V. Kolomietz, Phys. Rev. C 64, (2001) Peripheral Collisions: can provide information on the evolution of the N/Z degree of freedom and ( via microscopic calculations) the effective nucleon-nucleon interaction R =12 fm n p ρ overlap = ρ projectile + ρ target ρ overlap ~ 1/4 ρ o 124 Sn Kr Peripheral collision: t interaction short n p R =10 fm ρ overlap ~ ρ o 124 Sn Kr Semi- peripheral collision: t interaction longer

Isoscaling: 40 Ar (15MeV/nucleon) + 64 Ni, 58 Ni 40 Ar + 64 Ni, 58 Ni (data inside  gr =6.2 ο ) R 21 = C exp ( α N ) α = 4 C sym /T ( (Z/A) 1 2 – (Z/A) 2 2 ) Quasi-projectiles 1: n-poor 2:nrich GS files in “ar07” : anal_mars_ar_jun07 z1_iso_arni_tex.fit z1_iso_arni_figure.tex => *.ps a_iso_arni_tex.fit a_iso_arni_figure.tex => *.ps

Velocity, E*, TKEL vs Z correlations: 15MeV/u data υ min => E*/A ~2.0 MeV ● 40 Ar+ 64 Ni, 58 Ni ( 4 o data) GS files in “ar07” : anal_mars_ar_jun07 vz_iso_arni_tex.fit vz_iso_arni_figure.tex => *.ps

Residues: 40 Ar (15 MeV/u) + 64,58 Ni DIT CoMD (linear) CoMD (a-soft) CoMD (a-stiff) CoMD (Vsym = 0) 40 Ar+ 64 Ni 40 Ar+ 58 Ni C sym (ρ) MARS Isoscaling data* Δ(Z/A) 2 = (Z/A) (Z/A) 2 2 = a T / (4 C sym ) GS files in “ar07” : anal_mars_ar_jun07 azel1_arni_tex.fit azel1_arni_figure.tex => *.ps

TKEL correlations (I): All available MARS data О 86 Kr(15MeV/u)+ 64,58 Ni ( 4 o data) GS files in “kr07” : anal_mars_kr_jun07 azel_xxxx_tex.fit azel_xxxx_figure.tex => *.ps ● 86 Kr(15MeV/u)+ 124,112 Sn ( 7 o data) ▲ 40 Ar(15MeV/u)+ 64,58 Ni ( 4 o data)

TKEL correlations (II): All available MARS data О 86 Kr(15MeV/u)+ 64,58 Ni ( 4 o data) GS files in “kr07” : anal_mars_kr_jun07 azelv_xxxx_tex.fit azelv_xxxx_figure.tex => *.ps ● 86 Kr(15MeV/u)+ 124,112 Sn ( 7 o data) ▲ 40 Ar(15MeV/u)+ 64,58 Ni ( 4 o data) υ rel / υ rel,max

 40 Ar + 64 Ni largest cross sections with the n-rich 64 Ni target Nuclide cross sections from: 40 Ar (15MeV/nucleon) + 64 Ni, 58 Ni, 27 Al  40 Ar + 58 Ni  40 Ar + 27 Al 38 S σ = 20 mb KAr Cl S P Si (+1p) (-1p) (-4p)(-3p) (-2p)

Mass Distributions: 86 Kr (15 MeV/u) + 64 Ni* Large cross sections of n- pickup products -4p - 3p -2p -1p -5p 34 Se 33 As 30 Zn 31 Ga 32 Ge 35 Br -4p 23 l 86 Kr + 64 Ni (15 MeV/u) l 86 Kr + 64 Ni (25 MeV/u)* DIT/GEMINI EPAX *G. A. Souliotis et al., Phys. Lett. B 543, 163 (2002)

The Superconducting Solenoid Rare Isotope Line at TAMU: Schematic diagram of the setup for heavy-residue studies from DIC:

Results of BigSol Line tests: Charge State Distributions Charge state distribution at PPAC1 (thru 2-inch hole) of 64 Ni (35MeV/u) after a mylar stripper. B  =2.020 Tm, I BigSol =109.0 A Angular acceptance: deg Y X Angular acceptance: deg.

BigSol Line: 136 Xe DIC data Example of Z-E/A distribution of fragments from 136 Xe (20 MeV/u) data: ( ΔΕ-Ε-TOF techniques, use of large area Si and PPACs) : E/A (MeV/u) ZZ 136 Xe “elastic” B  =1.325 Tm, Angular acceptance: deg. 136 Xe+ 124 Sn 136 Xe+ 232 Th 136 Xe “elastic” up to + 6 p

END of Talk ( ΙI ) Quad Triplet :

Ion Optics calculations with COSY-Infinity (M. Berz et al.) θ 0 = 30 mr φ 0 =30 mr Quadrupole Triplet: 1 st order optics Target PPAC1 t,X,Y Rays through QTS: 46 Ar 18+ (14.7 MeV/u) Bρ=1.400 Tm x-z plane y-z plane Beam Q1Q2Q3 PPAC2, ΔE,E

Ion Optics calculations with COSY-Infinity (M. Berz et al.) θ 0 = 30 mr φ 0 =30mr Quadrupole Triplet: 3 d order optics Target PPAC1 t,X,Y x-z plane y-z plane Beam Q1Q2Q3 Rays through QTS: 46 Ar 18+ (14.7 MeV/u) Bρ=1.400 Tm PPAC2, ΔE,E

Ion Optics calculations with COSY-Infinity (M. Berz et al.) θ 0 = 30 mr φ 0 =30mr Quadrupole Triplet: 3 d order optics Target x-z plane y-z plane Q1Q2Q3 Rays through QTS: 46 Ar 18+ (14.7 MeV/u) Bρ=1.400 Tm 0.0% Δp/p 2.5% Δp/p 5.0% Δp/p Beam PPAC1 t,X,Y PPAC2, ΔE,E