CC  + Cross Section Results from MiniBooNE Mike Wilking TRIUMF / University of Colorado NuInt 22 May 2009.

Slides:



Advertisements
Similar presentations
Neutrinos from kaon decay in MiniBooNE Kendall Mahn Columbia University MiniBooNE beamline overview Kaon flux predictions Kaon measurements in MiniBooNE.
Advertisements

HARP Anselmo Cervera Villanueva University of Geneva (Switzerland) K2K Neutrino CH Meeting Neuchâtel, June 21-22, 2004.
05/31/2007Teppei Katori, Indiana University, NuInt '07 1 Charged Current Interaction measurements in MiniBooNE hep-ex/XXX Teppei Katori for the MiniBooNE.
MiniBooNE: (Anti)Neutrino Appearance and Disappeareance Results SUSY11 01 Sep, 2011 Warren Huelsnitz, LANL 1.
H. Ray, University of Florida1 MINIBOONE  e e .
MINERvA Overview MINERvA is studying neutrino interactions in unprecedented detail on a variety of different nuclei Low Energy (LE) Beam Goals: – Study.
Off-axis Simulations Peter Litchfield, Minnesota  What has been simulated?  Will the experiment work?  Can we choose a technology based on simulations?
1 Measurement of f D + via D +   + Sheldon Stone, Syracuse University  D o D o, D o  K -  + K-K- K+K+ ++  K-K- K+K+ “I charm you, by my once-commended.
Kevin Black Meenakshi Narain Boston University
F.Sanchez (UAB/IFAE)ISS Meeting, Detector Parallel Meeting. Jan 2006 Low Energy Neutrino Interactions & Near Detectors F.Sánchez Universitat Autònoma de.
Howard Budd, Univ. of Rochester1 Vector and Axial Form Factors Applied to Neutrino Quasi-Elastic Scattering Howard Budd University of Rochester (in collaboration.
Study of e + e  collisions with a hard initial state photon at BaBar Michel Davier (LAL-Orsay) for the BaBar collaboration TM.
Measurement of the Branching fraction B( B  D* l ) C. Borean, G. Della Ricca G. De Nardo, D. Monorchio M. Rotondo Riunione Gruppo I – Napoli 19 Dicembre.
10/24/2005Zelimir Djurcic-PANIC05-Santa Fe Zelimir Djurcic Physics Department Columbia University Backgrounds in Backgrounds in neutrino appearance signal.
Atmospheric Neutrino Oscillations in Soudan 2
1 Super-Kamiokande atmospheric neutrinos Results from SK-I atmospheric neutrino analysis including treatment of systematic errors Sensitivity study based.
Pion test beam from KEK: momentum studies Data provided by Toho group: 2512 beam tracks D. Duchesneau April 27 th 2011 Track  x Track  y Base track positions.
5/1/20110 SciBooNE and MiniBooNE Kendall Mahn TRIUMF For the SciBooNE and MiniBooNE collaborations A search for   disappearance with:
Preliminary Study of CC-Inclusive Events in the P0D using Global Reconstruction Rajarshi Das (w/ Walter Toki) Nu-Mu Prelim. Meeting Dec 2010 CSU.
Irakli Chakaberia Final Examination April 28, 2014.
The Muon Neutrino Quasi-Elastic Cross Section Measurement on Plastic Scintillator Tammy Walton December 4, 2013 Hampton University Physics Group Meeting.
MiniBooNE Michel Sorel (Valencia U.) for the MiniBooNE Collaboration TAUP Conference September 2005 Zaragoza (Spain)
Kalanand Mishra April 27, Branching Ratio Measurements of Decays D 0  π - π + π 0, D 0  K - K + π 0 Relative to D 0  K - π + π 0 Giampiero Mancinelli,
Preliminary Results from the MINER A Experiment Deborah Harris Fermilab on behalf of the MINERvA Collaboration.
Latest Results from the MINOS Experiment Justin Evans, University College London for the MINOS Collaboration NOW th September 2008.
MiniBooNE Cross Section Results H. Ray, University of Florida ICHEP Interactions of the future!
Detection of electromagnetic showers along muon tracks Salvatore Mangano (IFIC)
Search for Electron Neutrino Appearance in MINOS Mhair Orchanian California Institute of Technology On behalf of the MINOS Collaboration DPF 2011 Meeting.
Study of neutrino oscillations with ANTARES J. Brunner.
Study of neutrino oscillations with ANTARES J. Brunner.
Nucleon Decay Search in the Detector on the Earth’s Surface. Background Estimation. J.Stepaniak Institute for Nuclear Studies Warsaw, Poland FLARE Workshop.
Lukens - 1 Fermilab Seminar – July, 2011 Observation of the  b 0 Patrick T. Lukens Fermilab for the CDF Collaboration July 2011.
Inclusive Measurements of inelastic electron/positron scattering on unpolarized H and D targets at Lara De Nardo for the HERMES COLLABORATION.
Beam Extrapolation Fit Peter Litchfield  An update on the method I described at the September meeting  Objective;  To fit all data, nc and cc combined,
A bin-free Extended Maximum Likelihood Fit + Feldman-Cousins error analysis Peter Litchfield  A bin free Extended Maximum Likelihood method of fitting.
Mark Dorman UCL/RAL MINOS Collaboration Meeting Fermilab, Oct. 05 Data/MC Comparisons and Estimating the ND Flux with QE Events ● Update on QE event selection.
JPS 2003 in Sendai Measurement of spectral function in the decay 1. Motivation ~ Muon Anomalous Magnetic Moment ~ 2. Event selection 3. mass.
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
1 Constraining ME Flux Using ν + e Elastic Scattering Wenting Tan Hampton University Jaewon Park University of Rochester.
April 26, McGrew 1 Goals of the Near Detector Complex at T2K Clark McGrew Stony Brook University Road Map The Requirements The Technique.
An experiment to measure   with the CNGS beam off axis and a deep underwater Cherenkov detector in the Gulf of Taranto CNGS.
1 Measurement of the Mass of the Top Quark in Dilepton Channels at DØ Jeff Temple University of Arizona for the DØ collaboration DPF 2006.
Progress Report on GEANT Study of Containerized Detectors R. Ray 7/11/03 What’s New Since Last Time?  More detailed container description in GEANT o Slightly.
Outline: IntroJanet Event Rates Particle IdBill Backgrounds and signal Status of the first MiniBooNE Neutrino Oscillation Analysis Janet Conrad & Bill.
Kalanand Mishra June 29, Branching Ratio Measurements of Decays D 0  π - π + π 0, D 0  K - K + π 0 Relative to D 0  K - π + π 0 Giampiero Mancinelli,
QM2004 Version1 Measurements of the  ->     with PHENIX in Au+Au Collisions at 200 GeV at RHIC PPG016 Figures with Final Approval Charles F. Maguire.
Results and Implications from MiniBooNE: Neutrino Oscillations and Cross Sections 15 th Lomonosov Conference, 19 Aug 2011 Warren Huelsnitz, LANL
September 10, 2002M. Fechner1 Energy reconstruction in quasi elastic events unfolding physics and detector effects M. Fechner, Ecole Normale Supérieure.
PAC questions and Simulations Peter Litchfield, August 27 th Extent to which MIPP/MINER A can help estimate far detector backgrounds by extrapolation.
Extrapolation Techniques  Four different techniques have been used to extrapolate near detector data to the far detector to predict the neutrino energy.
Measurement of the Muon Charge Ratio in Cosmic Ray Events with the CMS Experiment at the LHC S. Marcellini, INFN Bologna – Italy on behalf of the CMS collaboration.
Neutrino Interaction measurement in K2K experiment (1kton water Cherenkov detector) Jun Kameda(ICRR) for K2K collaboration RCCN international workshop.
Observation Gamma rays from neutral current quasi-elastic in the T2K experiment Huang Kunxian for half of T2K collaboration Mar. 24, Univ.
 CC QE results from the NOvA prototype detector Jarek Nowak and Minerba Betancourt.
Mark Dorman UCL/RAL MINOS WITW June 05 An Update on Using QE Events to Estimate the Neutrino Flux and Some Preliminary Data/MC Comparisons for a QE Enriched.
E. W. Grashorn, for the MINOS Collaboration Observation of Shadowing in the Underground Muon Flux in MINOS This poster was supported directly by the U.S.
MINERνA Overview  MINERνA is studying neutrino interactions in unprecedented detail on a variety of different nuclei  Low Energy (LE) Beam Goals: t Study.
Neutrino-Nucleon Neutral Current Elastic Interactions in MiniBooNE Denis Perevalov University of Alabama for the MiniBooNE collaboration presented by:
R. Tayloe, Indiana U. DNP06 1 A Search for  → e oscillations with MiniBooNE MiniBooNE does not yet have a result for the  → e oscillation search. The.
Neutrino-Nucleon Neutral Current Elastic Interactions in MiniBooNE Denis Perevalov University of Alabama for the MiniBooNE collaboration presented by:
Charles F. Maguire Vanderbilt University
Charged Current Cross Sections with polarised lepton beam at ZEUS
Observation of Diffractively Produced W- and Z-Bosons
p0 life time analysis: general method, updates and preliminary result
Using Single Photons for WIMP Searches at the ILC
Impact of neutrino interaction uncertainties in T2K
Study of e+e- pp process using initial state radiation with BaBar
Study of e+e collisions with a hard initial state photon at BaBar
Charged Current Cross Sections with polarised lepton beam at ZEUS
Observation of Diffractively Produced W- and Z-Bosons
Presentation transcript:

CC  + Cross Section Results from MiniBooNE Mike Wilking TRIUMF / University of Colorado NuInt 22 May 2009

CC  + in Oscillation Experiments The next generation of  oscillation experiments lie at low, mostly unexplored  energies The next generation of  oscillation experiments lie at low, mostly unexplored  energies CCQE is the signal process for oscillation measurements CCQE is the signal process for oscillation measurements At these energies, CC  + is the dominant charged-current background At these energies, CC  + is the dominant charged-current background T2K NO  A CC  + CCQE DIS Charged Current Cross Sections

Previous CC  + Measurements The plot shows previous absolute cross section vs E  measurements The plot shows previous absolute cross section vs E  measurements (not including K2K; revisited in a few slides) (not including K2K; revisited in a few slides) Fewer than 8,000 events have been collected in all of these experiments combined Fewer than 8,000 events have been collected in all of these experiments combined Only one experiment was performed on a nuclear target (with E  > 3 GeV) Only one experiment was performed on a nuclear target (with E  > 3 GeV) Next-generation oscillation experiments use nuclear targets Next-generation oscillation experiments use nuclear targets T2K NO  A

The MiniBooNE Detector Particle reconstruction is based primarily on detection of Cherenkov radiation (additional information is gained from delayed isotropic light) Particle reconstruction is based primarily on detection of Cherenkov radiation (additional information is gained from delayed isotropic light) The tank is filled with 800 tons of ultra- pure mineral oil (modeled as CH 2 ) The tank is filled with 800 tons of ultra- pure mineral oil (modeled as CH 2 ) ” phototubes are attached to the inside surface of the tank (10% coverage) ” phototubes are attached to the inside surface of the tank (10% coverage) Outside the main tank is a thin spherical shell containing 240 phototubes to veto entering particles Outside the main tank is a thin spherical shell containing 240 phototubes to veto entering particles

MiniBooNE CC  + /CCQE Measurement The ratio of the CC  + cross section to CCQE has been measured at several neutrino energies The ratio of the CC  + cross section to CCQE has been measured at several neutrino energies Neutrino energies are determined from the reconstructed muon kinematics Neutrino energies are determined from the reconstructed muon kinematics Results are in agreement with previous measurements from K2K and ANL Results are in agreement with previous measurements from K2K and ANL Results were recently submitted to PRL Results were recently submitted to PRL See poster by J. Nowak See poster by J. Nowak arXiv:

Reconstruction Improvements In the MiniBooNE detector, the muon and pion produced in CC  + interactions are often both above Cherenkov threshold In the MiniBooNE detector, the muon and pion produced in CC  + interactions are often both above Cherenkov threshold To better reconstruct each event, both the muon and pion can be included in a simultaneous fit To better reconstruct each event, both the muon and pion can be included in a simultaneous fit In addition to reconstructing both particles, we further need the ability to distinguish the muon from the pion In addition to reconstructing both particles, we further need the ability to distinguish the muon from the pion Monte Carlo predicted muon and pion kinetic energy

Event Reconstruction Overview The reconstruction relies on a detailed analytic model of extended-track light production in the detector The reconstruction relies on a detailed analytic model of extended-track light production in the detector Each track is defined by 7 parameters: Each track is defined by 7 parameters: vertex (X,Y,Z,T) vertex (X,Y,Z,T) direction ( ,  ) direction ( ,  ) energy (E) energy (E) For a given set of track parameters, the charge and time probability distributions are determined for each PMT For a given set of track parameters, the charge and time probability distributions are determined for each PMT Fitting routine varies these parameters to best fit the measured charges and times Fitting routine varies these parameters to best fit the measured charges and times

Particle Identification The one track fit requires a particle hypothesis (e.g.  or e) The one track fit requires a particle hypothesis (e.g.  or e) Particle identification is achieved by comparing fit likelihoods from different track hypotheses Particle identification is achieved by comparing fit likelihoods from different track hypotheses The ratio of the  and e hypothesis fit likelihoods vs fit energy provides nice separation between electrons (top) and muons (bottom) The ratio of the  and e hypothesis fit likelihoods vs fit energy provides nice separation between electrons (top) and muons (bottom) arXiv:

Pion Reconstruction In addition to reconstructing the pion kinematics, the goal of a pion fitter is to provide a means by which pions can be distinguished from muons In addition to reconstructing the pion kinematics, the goal of a pion fitter is to provide a means by which pions can be distinguished from muons Pions and muons propagate in a very similar fashion (similar masses) Pions and muons propagate in a very similar fashion (similar masses) To separate, must exploit any differences To separate, must exploit any differences Pions tend to travel in very straight paths (much like muons) except that they occasionally interact hadronically and abruptly change direction Pions tend to travel in very straight paths (much like muons) except that they occasionally interact hadronically and abruptly change direction Since the nuclear debris emitted in these interactions usually doesn't produce any light, the pion trajectories are straight lines with a sharp “kink” in the middle Since the nuclear debris emitted in these interactions usually doesn't produce any light, the pion trajectories are straight lines with a sharp “kink” in the middle To improve the reconstruction of these tracks, a kinked track fitter is needed To improve the reconstruction of these tracks, a kinked track fitter is needed electron tracks muon trackspion tracks

Creating a Kinked Fitter The default track hypotheses assume that tracks start at one energy and finish with zero energy The default track hypotheses assume that tracks start at one energy and finish with zero energy For a kinked track likelihood function, the predicted charges are calculated for an unkinked “base track” at the desired energy For a kinked track likelihood function, the predicted charges are calculated for an unkinked “base track” at the desired energy An “anti-track” is then created collinear with the base track and downstream of the original vertex (with proportionately less energy) An “anti-track” is then created collinear with the base track and downstream of the original vertex (with proportionately less energy) The predicted charges for the anti-track are subtracted from the base track The predicted charges for the anti-track are subtracted from the base track Finally, a “downstream track” is created at the vertex of the anti-track but with even less energy (due to Δ E kink ) and pointing in a new direction Finally, a “downstream track” is created at the vertex of the anti-track but with even less energy (due to Δ E kink ) and pointing in a new direction Kink point base track anti-track downstream track 4 new track parameters: distance to kink point kink energy loss downstream direction (θ and φ)

Energy Reconstruction: Monte Carlo simulation of single pion events The peak from the kinked fit is centered on zero (straight track peak is ~10% low) The peak from the kinked fit is centered on zero (straight track peak is ~10% low) Kinked peak is narrower Kinked peak is narrower Low E fit “shoulder” from high energy pions is much smaller in kinked fit Low E fit “shoulder” from high energy pions is much smaller in kinked fit (E fit -E true )/E true Straight Pion Fit Kinked Pion Fit

Angle Reconstruction The plot shows the reconstructed  /  angle versus the WORSE of the two true/reconstructed angles The plot shows the reconstructed  /  angle versus the WORSE of the two true/reconstructed angles At low reconstructed  /  angle, the fitter is slightly less accurate At low reconstructed  /  angle, the fitter is slightly less accurate When one track is below Cherenkov threshold, the fitter tends to place it on top of the other track When one track is below Cherenkov threshold, the fitter tends to place it on top of the other track The bins on the diagonal are events where the  is misidentified as the  (and vice versa) The bins on the diagonal are events where the  is misidentified as the  (and vice versa) true  true  fit  fit   _X  Y  _X : Max Fit/True Angle (  or  )  _Y : Reconstructed  Angle

Neutrino Energy Reconstruction Since both the muon and pion are reconstructed, the event kinematics are fully specified assuming Since both the muon and pion are reconstructed, the event kinematics are fully specified assuming Target nucleon is at rest Target nucleon is at rest Neutrino direction is known Neutrino direction is known Recoiling nucleon mass is known Recoiling nucleon mass is known Unlike previous analyses that have only reconstructed the muon, no assumption is needed about the mass of the recoiling Δ particle created in the interaction Unlike previous analyses that have only reconstructed the muon, no assumption is needed about the mass of the recoiling Δ particle created in the interaction Fairly insensitive to misidentifying the muon and pion since both particles have similar mass Fairly insensitive to misidentifying the muon and pion since both particles have similar mass

Neutrino Energy Resolution The reconstructed neutrino energy is centered on the true energy The reconstructed neutrino energy is centered on the true energy The resolution is ~13.5% over most of the measured energy range: ( GeV) The resolution is ~13.5% over most of the measured energy range: ( GeV) (Fit - True)/True Energy Resolution True (MeV)

 + +N Mass Since we make no assumptions about the delta mass, we can reconstruct it Since we make no assumptions about the delta mass, we can reconstruct it The CCQE background piles up at low delta mass The CCQE background piles up at low delta mass  +N Mass (MeV) MC Background Prediction Data / MC Relatively normalized

 + +N Mass Cut The plot shows the reconstructed  + +N mass vs the generated value for Monte Carlo events The plot shows the reconstructed  + +N mass vs the generated value for Monte Carlo events At low masses, there is a correlation between these quantities, as expected At low masses, there is a correlation between these quantities, as expected Events in which a high energy muon is mis- reconstructed as a pion tend to accumulate at high reconstructed mass Events in which a high energy muon is mis- reconstructed as a pion tend to accumulate at high reconstructed mass A cut has been placed at 1350 MeV to removed these mis-reconstructed events A cut has been placed at 1350 MeV to removed these mis-reconstructed events Rejected Accepted

Selection Cut Summary 3 subevents 3 subevents Subevent 1: Subevent 1: thits > 175 thits > 175 vhits < 6 vhits < 6 Subevents 2 and 3: Subevents 2 and 3: 20 < thits < < thits < 200 vhits < 6 vhits < 6 Fiducial volume cut Fiducial volume cut Reconstructed  + +N mass < 1350 MeV Reconstructed  + +N mass < 1350 MeV These cuts result in 48,000 events with a 90% purity, and a correct muon/pion identification rate of 88% These cuts result in 48,000 events with a 90% purity, and a correct muon/pion identification rate of 88% beam

Observed CC  + Cross Section Neutrino interactions are often modeled in terms of single nucleon cross sections plus additional nuclear processes that alter the composition of the final state Neutrino interactions are often modeled in terms of single nucleon cross sections plus additional nuclear processes that alter the composition of the final state Since the details of intra-nuclear processes are not accessible to experiment, we do not attempt to extrapolate our observations to the single nucleon cross section Since the details of intra-nuclear processes are not accessible to experiment, we do not attempt to extrapolate our observations to the single nucleon cross section greatly reduces model dependence greatly reduces model dependence Instead, we define an observed CC  + event to be any interaction that produces the following final state: Instead, we define an observed CC  + event to be any interaction that produces the following final state: one and only one muon one and only one muon one and only one pion one and only one pion any number of photons and baryons from the breakup of the nucleus any number of photons and baryons from the breakup of the nucleus

Measuring the Cross Section Cross sections are calculated as a function of any variable(s) in the interaction Cross sections are calculated as a function of any variable(s) in the interaction The calculation uses the above formula (i = reconstructed bin; j = true bin) The calculation uses the above formula (i = reconstructed bin; j = true bin) v i : any 1D or 2D distribution v i : any 1D or 2D distribution D i : reconstructed data distribution of v D i : reconstructed data distribution of v B i : background prediction of v B i : background prediction of v M ij : unfolding matrix (see next slide) M ij : unfolding matrix (see next slide)  j : MC efficiency in unfolded bins  j : MC efficiency in unfolded bins  (j) : integrated flux (or flux histogram in the case of E  )  (j) : integrated flux (or flux histogram in the case of E  ) POT: protons on target POT: protons on target N targ : number of targets = volume*density*N A /(target molecular weight) N targ : number of targets = volume*density*N A /(target molecular weight)

Unfolding Matrix Top: the reconstructed vs true muon kinetic energy histogram Top: the reconstructed vs true muon kinetic energy histogram Bottom: each row has been normalized to one to produce the unfolding matrix, M ij Bottom: each row has been normalized to one to produce the unfolding matrix, M ij Each row of the matrix gives the probability that an event reconstructed in bin i should be placed in true bin j Each row of the matrix gives the probability that an event reconstructed in bin i should be placed in true bin j

Systematic Errors For each error source, all parameters are varied according to a full covariance matrix For each error source, all parameters are varied according to a full covariance matrix For each new set of parameters, a new set of systematically varied events, or “multisim”, is produced For each new set of parameters, a new set of systematically varied events, or “multisim”, is produced To determine the systematic errors on each cross section measurement, the cross section calculation is repeated using the multisim as though it were the central value Monte Carlo simulation To determine the systematic errors on each cross section measurement, the cross section calculation is repeated using the multisim as though it were the central value Monte Carlo simulation For the absolute CC  + cross section measurements, the dominant systematic uncertainties are: For the absolute CC  + cross section measurements, the dominant systematic uncertainties are: flux prediction flux prediction modeling of pion absorption and charge exchange interactions in the tank modeling of pion absorption and charge exchange interactions in the tank

Cross Section Measurements One-Dimensional Measurements One-Dimensional Measurements  (E  ): neutrino energy  (E  ): neutrino energy d  /d(Q 2 ): momentum transfer d  /d(Q 2 ): momentum transfer d  /d(KE  ): muon kinetic energy d  /d(KE  ): muon kinetic energy d  /d(cos   ): muon/neutrino angle d  /d(cos   ): muon/neutrino angle d  /d(KE  ): pion kinetic energy d  /d(KE  ): pion kinetic energy d  /d(cos   ): pion/neutrino angle d  /d(cos   ): pion/neutrino angle Double Differential Cross Sections Double Differential Cross Sections d 2  /d(KE  )d(cos   ): muon kinetic energy vs angle d 2  /d(KE  )d(cos   ): muon kinetic energy vs angle d 2  /d(KE  )d(cos   ): pion kinetic energy vs angle d 2  /d(KE  )d(cos   ): pion kinetic energy vs angle (emphasize not FSI corrected) (emphasize not FSI corrected) Each of the Single Differential Cross Sections has also been measured in two-dimensions as a function of neutrino energy Results in gold will be shown on the following slides

Absolute CC  + Cross Section in Neutrino Energy The measured cross section is shown in red, and the total uncertainty is given by the green error band The measured cross section is shown in red, and the total uncertainty is given by the green error band The lower plot gives the fractional error and the ratio of the Monte Carlo prediction to the measured cross section The lower plot gives the fractional error and the ratio of the Monte Carlo prediction to the measured cross section The Monte Carlo prediction is shown in black for comparison The Monte Carlo prediction is shown in black for comparison In addition to the diagonal errors shown, full correlated error matrices have been produced for all measurements In addition to the diagonal errors shown, full correlated error matrices have been produced for all measurements CH 2 Target

Absolute CC  + Cross Section in Q 2 Top: measured cross section with error bands (with Monte Carlo prediction for comparison) Top: measured cross section with error bands (with Monte Carlo prediction for comparison) Bottom: fractional uncertainties in each bin (with MC prediction ratio) Bottom: fractional uncertainties in each bin (with MC prediction ratio) Just like CCQE, the data turn over faster relative to Monte Carlo at low Q 2 Just like CCQE, the data turn over faster relative to Monte Carlo at low Q 2 This measurement is flux averaged, so each bin has a minimum uncertainty of 12% This measurement is flux averaged, so each bin has a minimum uncertainty of 12% CH 2 Target

Double Differential Cross Section in Pion Energy and Angle Top: measured double differential cross section in pion kinetic energy and cos(θ π,ν ) Top: measured double differential cross section in pion kinetic energy and cos(θ π,ν ) Bottom: fractional measurement uncertainty in each bin Bottom: fractional measurement uncertainty in each bin A full correlated error matrix has been calculated that includes each measured 2D bin A full correlated error matrix has been calculated that includes each measured 2D bin CH 2 Target

Summary MiniBooNE recently submitted a measurement of the CC  + /CCQE cross section ratio to PRL MiniBooNE recently submitted a measurement of the CC  + /CCQE cross section ratio to PRL By exploiting the hadronic interactions of charged pions, we can now reconstruct both the pion and the muon By exploiting the hadronic interactions of charged pions, we can now reconstruct both the pion and the muon With a few simple cuts, we can achieve an event purity of 90%, while correctly identifying muon & pion tracks with an 88% success rate With a few simple cuts, we can achieve an event purity of 90%, while correctly identifying muon & pion tracks with an 88% success rate Using this new fit technique, we have produced the first ever differential and double-differential CC  + cross section measurements in both muon and pion final state kinematic variables Using this new fit technique, we have produced the first ever differential and double-differential CC  + cross section measurements in both muon and pion final state kinematic variables We plan to publish these results this summer We plan to publish these results this summer

Backups

Multisim Production For systematic uncertainties that only affect the probability of an event occurring (e.g. flux & cross sections), multisims can be created via reweighting For systematic uncertainties that only affect the probability of an event occurring (e.g. flux & cross sections), multisims can be created via reweighting For the optical model, 67 unisims were generated from scratch For the optical model, 67 unisims were generated from scratch Below are multisim error examples for a single reconstructed neutrino energy bin (1000 < E  < 1050 MeV) Below are multisim error examples for a single reconstructed neutrino energy bin (1000 < E  < 1050 MeV) Central Value MC 100  + reweighting multisims 67 Optical Model multisims Central Value MC

Energy Shoulder The low fit energy shoulder in (E fit -E true )/E true comes from higher energy events The low fit energy shoulder in (E fit -E true )/E true comes from higher energy events more energy lost in kinks more energy lost in kinks more kinks more kinks E true (E fit -E true )/E true From a Monte Carlo simulation of single pion events generated uniformly between 50 and 450 MeV

Detector Simulation Uncertainties The optical model contains 35 parameters that control a variety of different phenomena, such as The optical model contains 35 parameters that control a variety of different phenomena, such as scattering scattering extinction length extinction length reflections reflections PMT quantum efficiency PMT quantum efficiency Each parameter is simultaneously varied within its measured error in an attempt to ascertain information about parameter correlations Each parameter is simultaneously varied within its measured error in an attempt to ascertain information about parameter correlations The default GFLUKA model has been replaced by GCALOR, which more accurately represents pion absorption and charge exchange data The default GFLUKA model has been replaced by GCALOR, which more accurately represents pion absorption and charge exchange data The residual discrepancy is taken as a systematic uncertainty The residual discrepancy is taken as a systematic uncertainty

Beryllium/Aluminum Cross Sections Nucleon and pion cross sections have several components related by: Nucleon and pion cross sections have several components related by:  TOT =  ELA +  INE =  ELA +(  QE +  REA )  TOT =  ELA +  INE =  ELA +(  QE +  REA )  TOT : total interaction cross section  TOT : total interaction cross section  ELA : elastic scattering cross section  ELA : elastic scattering cross section  INE : inelastic scattering cross section  INE : inelastic scattering cross section  QE : quasi-elastic scattering (target breakup; incident particle intact)  QE : quasi-elastic scattering (target breakup; incident particle intact)  REA : “reaction” cross section (all non-QE inelastic scattering)  REA : “reaction” cross section (all non-QE inelastic scattering) Custom models have been built for the total, quasi- elastic, and inelastic cross sections Custom models have been built for the total, quasi- elastic, and inelastic cross sections  TOT : Glauber model for elastic scattering (coherent nucleon sum) + optical theorem  TOT : Glauber model for elastic scattering (coherent nucleon sum) + optical theorem  QE : incoherent nucleon sum + shadowed multiple scattering expansion  QE : incoherent nucleon sum + shadowed multiple scattering expansion  INE : Regge model parametrization; fit to data  INE : Regge model parametrization; fit to data Nucleon Inelastic Cross Sections Pion Inelastic Cross Sections Be AlBe Al

Pion Production Uncertainties The Sanford-Wang function fit to the HARP data produces a  2 /dof of 1.8 The Sanford-Wang function fit to the HARP data produces a  2 /dof of 1.8 To account for this discrepancy, the normalization uncertainty has effectively been inflated to 18% To account for this discrepancy, the normalization uncertainty has effectively been inflated to 18% The intrinsic HARP uncertainties are an uncorrelated 7% The intrinsic HARP uncertainties are an uncorrelated 7% Rather than artificially inflate the normalization to cover an incompatibility in the shape of the parametrization, the HARP data is fit to a spline function Rather than artificially inflate the normalization to cover an incompatibility in the shape of the parametrization, the HARP data is fit to a spline function The spline function passes through the data points and the uncertainties blow up in regions with no data The spline function passes through the data points and the uncertainties blow up in regions with no data The SW function is still used to generate Monte Carlo The SW function is still used to generate Monte Carlo the uncertainties are given by the distance between each spline variation and the SW central value the uncertainties are given by the distance between each spline variation and the SW central value this inflates the error in regions where the SW and spline central values disagree this inflates the error in regions where the SW and spline central values disagree pion cross section vs momentum in bins of pion angle

Flux Uncertainties Several components of the simulation have been varied to assess the effect they have on the   flux (called “unisims”) Several components of the simulation have been varied to assess the effect they have on the   flux (called “unisims”) horn current horn current horn current skin depth in the inner conductor horn current skin depth in the inner conductor all measured (or calculated) components of the p,n,  -Be,Al cross sections (while holding the other components fixed all measured (or calculated) components of the p,n,  -Be,Al cross sections (while holding the other components fixed  TOT =  ELA +  INE =  ELA +(  QE +  REA )  TOT =  ELA +  INE =  ELA +(  QE +  REA ) The plot shows the variations that produce an effect larger than 2% The plot shows the variations that produce an effect larger than 2% The skin depth produces a large effect at high energies The skin depth produces a large effect at high energies The quasi-elastic cross section calculations are the least constrained by data → largest error The quasi-elastic cross section calculations are the least constrained by data → largest error  + production uncertainties are given by the spline fit covariance matrix (taken about the SW central value)  + production uncertainties are given by the spline fit covariance matrix (taken about the SW central value) K + uncertainties are given by the Feynman Scaling fit covariance matrix K + uncertainties are given by the Feynman Scaling fit covariance matrix

Nuance Uncertainties Several parameters of the cross section model are varied; the most important are as follows Several parameters of the cross section model are varied; the most important are as follows Each of the background processes are varied Each of the background processes are varied CCQE: M A = ± GeV (6.2%) CCQE: M A = ± GeV (6.2%) CC multi  : M A = 1.30 ± 0.52 GeV (40%) CC multi  : M A = 1.30 ± 0.52 GeV (40%) DIS: normalization varied by 25% DIS: normalization varied by 25% Several important nuclear model parameters are varied as well Several important nuclear model parameters are varied as well binding energy: 34 ± 9 MeV (26%) binding energy: 34 ± 9 MeV (26%) Fermi momentum: 220 ± 30 MeV/c (14%) Fermi momentum: 220 ± 30 MeV/c (14%) pion absorption: 25% pion absorption: 25% pion charge exchange: 30% pion charge exchange: 30% Δ  + N → N + N: 100% Δ  + N → N + N: 100%

How Do Pions Behave in the Oil? The top plots show the vertices of every emitted photon that hits a phototube for a typical 300 MeV pion The top plots show the vertices of every emitted photon that hits a phototube for a typical 300 MeV pion The bottom plots show the Monte Carlo truth information The bottom plots show the Monte Carlo truth information X vs ZY vs Z

Sample Fit Top plot fit result legend: Top plot fit result legend: Black line = pion OneTrack fit Black line = pion OneTrack fit Red line = muon OneTrack fit Red line = muon OneTrack fit Magenta line = pion OneTrackKinked fit Magenta line = pion OneTrackKinked fit X vs ZY vs Z