By Alain L. Kornhauser, PhD Professor, Operations Research & Financial Engineering Director, Program in Transportation Faculty Chair, PAVE (Princeton Autonomous.

Slides:



Advertisements
Similar presentations
An Advanced Transit Alternative for The Princetons Alain L Kornhauser 24 Montadale circle Board Chair Advanced Transit Association Founder ALK Transportation.
Advertisements

Real-Time Travel Information in Turn-by-Turn Navigation: Past Present & Future Alain L. Kornhauser Professor, Operations Research & Financial Engineering.
PROJECT DESCRIPTION & GOALS The Trip Demand Synthesis Process and the aTaxi + Rail Transit Mobility Concepts By Julia Phillips Hill Wyrough.
The Current State and Future of the Regional Multi-Modal Travel Demand Forecasting Model.
By Alain L. Kornhauser, PhD Professor, Operations Research & Financial Engineering Director, Program in Transportation Faculty Chair, PAVE (Princeton Autonomous.
Smart Driving Cars: Transit Opportunity of NHTSA Level 4 Driverless Vehicles Alain L. Kornhauser Professor, Operations Research & Financial Engineering.
County 2010 Census # People, Lat, Lon, For each person Vital Stats RandomDraw: Age, M/F, WorkerType, WorkCounty Destination RandomDraw: Journey2Work Home.
InMoSion: Science Shop for Innovative Mobility Solutions for Mobility Challenged Europeans 3rd INTERNATIONAL MEETING ANKARA, TURKEY Partnering: Civil Engineering.
By Alain L. Kornhauser, PhD Professor, Operations Research & Financial Engineering Director, Program in Transportation Faculty Chair, PAVE (Princeton Autonomous.
Friday, January 11, 2013 North East Jersey Essex Population: 783,969 Area (square miles): 130 Census Blocks: 8,751 Hudson Population: 634,266 Area (square.
Efforts to Advance SmartDrivingCars In New Jersey
Daily Person Trips in New Jersey: A Synthesis Alain L. Kornhauser Professor, Operations Research & Financial Engineering Director, Transportation Research.
Bus Rapid Transit: Chicago’s New Route to Opportunity Josh Ellis, BRT Project Manager Metropolitan Planning Council.
Uncongested Mobility for All: A Proposal for an Area Wide Autonomous Taxi System in New Jersey By Jaison Zachariah ‘13 Jingkang Gao ‘13 Tala Mufti *13.
Connie Ruth, EPA Best Workplaces for Commuters The Advantages of Excellent Commuter Benefits Why your University or College Should Achieve the Best Workplaces.
TECHNIX 2009 January, 11, 2009 From the Paved State Back to the Garden State Mobility without Highways for New Jersey Alain L. Kornhauser Professor, Operations.
What about the whole country? Extending the Activity-Based Person-Trip Synthesizer to all 330 million Americans Judy Sun ‘14 & Luke Cheng ’14 ORF467 F13.
By Alain L. Kornhauser, PhD Professor, Operations Research & Financial Engineering Director, Program in Transportation Faculty Chair, PAVE (Princeton Autonomous.
State of the Art & Near Term Future of Smart Driving Cars by Alain L. Kornhauser, Ph.D. Professor, Operations Research & Financial Engineering Director,
Transportation 101 June 12, Presenting Agencies  Southwestern PA Commission’s CommuteInfo program  GG & C Bus Company, Inc.  Mid Mon Valley Transit.
Serving New Jersey’s Personal Mobility Needs: With Walking, Bicycling, aTaxis and Trains Mercer County.
The Role of Automation in Revolutionizing Public Transportation Alain L. Kornhauser Professor, Operations Research & Financial Engineering Director, Program.
Urban Planning & Community Design Considerations in an Era of Driverless Cars By Alain L. Kornhauser Professor, Operations Research & Financial Engineering.
Business Logistics 420 Public Transportation Lecture 20: Transit System Design.
Conclusion, Limitations, and Next Steps ORF467 Fall : Professor Alain L. Kornhauser Charlotte Muller and Saumya Swaroop.
Urban Planning & Community Design Considerations in an Era of Driverless Cars By Alain L. Kornhauser Professor, Operations Research & Financial Engineering.
MPO/RPC Directors Meeting Asadur Rahman Lead Worker-Traffic Forecasting Section, BPED, July 28, 2015.
Maximizing Airport Land Values: A Concept and Daily Person Trips in New Jersey: A Synthesis Alain L. Kornhauser Professor, Operations Research & Financial.
By Alain L. Kornhauser, PhD Professor, Operations Research & Financial Engineering Director, Program in Transportation Faculty Chair, PAVE (Princeton Autonomous.
Transportation 101 August 7, Presenting Agencies  Southwestern PA Commission’s CommuteInfo program  IndiGO: Indiana County Transit Authority 
By Alain L. Kornhauser, PhD Professor, Operations Research & Financial Engineering Director, Program in Transportation Faculty Chair, PAVE (Princeton Autonomous.
Smart Driving Cars: Where Might We End Up? Ridesharing and Fleet Size Estimates for a New Jersey Area –Wide aTaxi System Alain L. Kornhauser Professor,
By Alain L. Kornhauser, PhD Professor, Operations Research & Financial Engineering Director, Program in Transportation Faculty Chair, PAVE (Princeton Autonomous.
Journey to Work from 1990 Census and ACS National test (C2SS) Elaine Murakami, USDOT, FHWA Nanda Srinivasan, Cambridge Systematics Inc.
Somerset and Union Counties An Analysis of aTaxi Trip Distribution in Somerset and Union Counties, New Jersey ORF 467: Transportation Systems Analysis.
Orf 467F’14 by Alain L. Kornhauser, PhD Professor, Operations Research & Financial Engineering Director, Program in Transportation Faculty Chair, PAVE.
TRANSIMS Version 5 Demand Files January 20, 2011 David Roden – AECOM.
ILUTE A Tour-Based Mode Choice Model Incorporating Inter-Personal Interactions Within the Household Matthew J. Roorda Eric J. Miller UNIVERSITY OF TORONTO.
A-Taxi System: Analysis of Passaic, Morris, & Bergen County Luke Cheng Proma Banerjee.
By Alain L. Kornhauser, PhD Professor, Operations Research & Financial Engineering Director, Program in Transportation Faculty Chair, PAVE (Princeton Autonomous.
By Alain L. Kornhauser, PhD Professor, Operations Research & Financial Engineering Director, Program in Transportation Faculty Chair, PAVE (Princeton Autonomous.
T-Share: A Large-Scale Dynamic Taxi Ridesharing Service
Appropriate Modelling of Travel Demand in a SmartDrivingCar World
Modelling Driverless Mobility for all of America
ORF467 Final Presentation
Busses & autonomousTaxis
Our Suite of Services.
Big-time Implications of SmartDrivingCars (…Trucks & Buses)
SmartDrivingCars Disrupting 15% of World GDP Princeton University by
Advanced Transit Automation:
Transportation Engineering Mode Choice January 21, 2011
A National Disaggregate Transportation Demand Model for the Analysis of Autonomous Taxi Systems Alexander Penn Hill Wyrough Jr. May 8, 2014 Advised.
Typical Daily NJ-wide AVO
Project description & goals
Opportunities for Vehicle Automation to Revolutionize Transit Services
aTaxis: Demand Management in Middlesex County
Why Ride Sharing is Challenging
Average Vehicle Occupancy (AVO) Analysis of aTaxis
SmartDrivingCars & Older People:
The Darwinian Evolution of SmartDrivingCars
R/Evolution of SmartDrivingCars in the US Where did we come from;
aTaxis: A New Urban Canvas for Vandals Artists
Big-time Implications of SmartDrivingCars (…Trucks & Buses)
TransCAD Vehicle Routing 2018/11/29.
Have You Noticed??? Google/Waymo’s Buying Spree
New Jersey’s Rail Network
Advanced Transit Automation:
ORF 467 Final Project Assessment of RideSharing, ‘Last-Mile” and Optimal Empty Vehicle Management of Large Regional aTaxi Operation: South Region Yowan.
Average Vehicle Occupancy (AVO) Analysis of aTaxis
(Princeton Autonomous Vehicle Engineering)
Presentation transcript:

by Alain L. Kornhauser, PhD Professor, Operations Research & Financial Engineering Director, Program in Transportation Faculty Chair, PAVE (Princeton Autonomous Vehicle Engineering) Princeton University Presented at PAVE – Summer Workshop Princeton, NJ August 4-6, 2014 Daily Individual Person Trips in New Jersey & USA: A Synthesis

Most every day… Almost 9 Million NJ residents 0.25 Million of out of state commuters Make 30+ Million trips Throughout the 8,700 sq miles of NJ Where/when do they start? Where do they go? Does anyone know??? – I certainly don’t Not to sufficient precision for credible analysis

I’ve harvested one of the largest troves of GPS tracks – Literally billions of individual trips, – Unfortunately, they are spread throughout the western world, throughout the last decade. – Consequently, I have only a very small ad hoc sample of what happens in NJ on a typical day. I’ve Tried…

Why do I want to know every trip? Academic Curiosity If offered an alternative, which ones would likely “buy it” and what are the implications. More specifically: – If an alternative transport system were available, which trips would be diverted to it and what operational requirements would those trip impose on the new system? In the end… – a transport system serves individual decision makers. It’s patronage is an ensemble of individuals, – I would prefer analyzing each individual trip patronage opportunity.

Synthesize from publically available data: “every” NJ Traveler on a typical day NJ_Resident file – Containing appropriate demographic and spatial characteristics that reflect trip making “every” trip that each Traveler is likely to make on a typical day. NJ_PersonTrip file – Containing appropriate spatial and temporal characteristics for each trip

Creating the NJ_Resident file for “every” NJ Traveler on a typical day NJ_Resident file Start with Publically available data:

2010 Population Level – 8,791,894 individuals distributed 118,654 Blocks. CountyPopulationCensus BlocksMedian Pop/ BlockAverage Pop/Block ATL 274,549 5, BER 905,116 11, BUR 448,734 7, CAM 513,657 7, CAP 97,265 3, CUM 156,898 2, ESS 783,969 6, GLO 288,288 4, HUD 634,266 3, HUN 128,349 2, MER 366,513 4, MID 809,858 9, MON 630,380 10, MOR 492,276 6, OCE 576,567 10, PAS 501,226 4, SAL 66,083 1, SOM 323,444 3, SUS 149,265 2, UNI 536,499 6, WAR 108,692 2, Total 8,791, ,

Bergen Block Level CountyPopulationCensus Blocks Median Pop/ Block Average Pop/Block BER 907,128 11,

Publically available data: Distributions of Demographic Characteristics – Age – Gender – Household size – Name (Last, First) Ages (varying linearly over interval):input:output: [0,49]67.5% [50,64]18.0%17.9% [65,79]12.0%12.1% [80,100]2.5% Gender:Input:Output: female51.3% Household:Size:Probability:cdf:Expectation: couple couple couple couple couple couple + grandparent: single woman single mom single mom single mom single mom single man single dad single dad single dad

Beginnings of NJ_Resident file County 2010 Census # People, Lat, Lon, For each person Vital Stats RandomDraw: Age, M/F, WorkerType, Task 1 County Person Index Household IndexLast Name First Name Middle InitialAgeGender Worker IndexWorker Type Home Latitude Home Longitude 0 11PREVILLERICHARDG.24FALSE5worker PREVILLEJACKJ.7FALSE0grade School PREVILLECHARLESX.1FALSE7under DEVEREUXSUEB.24TRUE6at-home-worker DEVEREUXANTONP.2FALSE7under DEVEREUXKATIES.6TRUE0grade School WHEDBEELINDAC.26TRUE6at-home-worker CARVERROBERTZ.24FALSE5worker CARVERJENNIFERP.25TRUE6at-home-worker TINSLEYELLENU.23TRUE4college on campus: WorkerType IndexWorkerType String:Distribution: 0grade school100% ages [6,10] 1middle school100% ages [11,14] 2high school100% ages [15,18] 3college: commuteSate-wide distribution 4college: on campusSate-wide distribution 5workerDrawn to match J2W Stats by County 6at-home worker and retiredRemainder + 100% ages [65,79] 7nursing home and under 5100% ages [0,5] and 100% ages [80,100]

Using Census Journey-to- Work (J2W) Tabulations to assign Employer County County Person Index Household IndexLast Name First Name Middle InitialAgeGender Worker IndexWorker Type Home Latitude Home Longitude Employer County 011PREVILLERICHARDG.24FALSE5worker PREVILLEJACKJ.7FALSE0grade School PREVILLECHARLESX.1FALSE7under DEVEREUXSUEB.24TRUE6at-home-worker DEVEREUXANTONP.2FALSE7under DEVEREUXKATIES.6TRUE0grade School WHEDBEELINDAC.26TRUE6at-home-worker CARVERROBERTZ.24FALSE5worker CARVERJENNIFERP.25TRUE6at-home-worker TINSLEYELLENU.23TRUE4college on c ampus: WorkCounty Destination RandomDraw: Journey2Work Home County C2C Journey2Work Work County Task Home State Home CountyCounty Name Work State Work CountyCounty NameWorkers 34 1Atlantic Co. NJ659Orange Co. CA Atlantic Co. NJ685Santa Clara Co. CA9 34 1Atlantic Co. NJ103New Castle Co. DE Atlantic Co. NJ105Sussex Co. DE9 6 37L. A. Co. CA341Atlantic Co. NJ Riverside Co. CA341Atlantic Co. NJ7 9 3Hartford Co. CT341Atlantic Co. NJ5 9 5Litchfield Co. CT341Atlantic Co. NJ4

Using Employer Data to assign a Workplace Characteristics Name County NAICS Code NAICS Description Employ ment Latitude Longitude 1 VIP SKINDEEP Atlantic Other Personal Care Acres Motel Atlantic Hotels & Motels Ex Casino Grand Street Investors Atlantic Misc Financial Inves S Main St LLC Atlantic Lessors Of Res Buildg th Floor Creative Group Atlantic Motion Picture Prod Cab Co Atlantic Taxi Svc Junk Car Removal Atlantic Used Merch Stores Bar Atlantic Drinking Places Got-Junk? Atlantic Other Non-Haz Waste Disp Employment-Weighted Random Draw Employment-Weighted Random Draw

Using School Data to Assign School Characteristics

Assigning a Daily Activity (Trip) Tour to Each Person

Final NJ_Resident file Home County Person Index Household Index Full Name Age Gender Worker Type Index Worker Type String Home lat, lon Work or School lat,lon Work County Work or School Index NAICS code Work or School start/end time ATL 274,549 BER 905,116 BUR 448,734 CAM 513,657 CAP 97,265 CUM 156,898 ESS 783,969 GLO 288,288 HUD 634,266 HUN 128,349 MER 366,513 MID 809,858 MON 630,380 MOR 492,276 OCE 576,567 PAS 501,226 SAL 66,083 SOM 323,444 SUS 149,265 UNI 536,499 WAR 108,692 NYC 86,418 PHL 18,586 BUC 99,865 SOU 13,772 NOR 5,046 WES 6,531 ROC 32,737 Total: 9,054,849

Creating the NJ_PersonTrip file “every” trip that each Traveler is likely to make on a typical day. NJ_PersonTrip file – Containing appropriate spatial and temporal characteristics for each trip Start with – NJ_ResidentTrip file – NJ_Employment file Readily assign trips between Home and Work/School – Trip Activity -> Stop Sequence Home, Work, School characteristics synthesized in NJ_Resident file

Assigning “Other” Locations Attractiveness (i)= (Patrons (I)/AllPatrons)/{D(i,j) 2 + D(j,k) 2 }; Where i is destination county; j is current county; k is home county Attractiveness (i)= (Patrons (I)/AllPatrons)/{D(i,j) 2 + D(j,k) 2 }; Where i is destination county; j is current county; k is home county 1. Select Other County Using: Attractiveness-Weighted Random Draw 1. Select Other County Using: Attractiveness-Weighted Random Draw 2. Select “Other” Business using: Patronage-Weighted Random Draw within selected county 2. Select “Other” Business using: Patronage-Weighted Random Draw within selected county

Assigning Trip Departure Times For: H->W; H->School; W->Other Work backwards from Desired Arrival Time using Distance and normally distributed Speed distribution, and Non-symmetric early late probabilities Else, Use Stop Duration with non-symmetric early late probabilities based on SIC Cod For: H->W; H->School; W->Other Work backwards from Desired Arrival Time using Distance and normally distributed Speed distribution, and Non-symmetric early late probabilities Else, Use Stop Duration with non-symmetric early late probabilities based on SIC Cod Distribution of Arrival/Departure Times Trip Type; SIC Time Generator: RandomDraw: Time Distribution Trip Departure time (SeconsFromMidnight) Task 8

NJ_PersonTrip file 9,054,849 records – One for each person in NJ_Resident file Specifying 30,564,528 Daily Person Trips – Each characterized by a precise Origination, Destination and Departure Time All Trips Home County TripsTripMilesAverageTM #Miles ATL 936,585 27,723, BER 3,075,434 40,006, BUC 250,006 9,725, BUR 1,525,713 37,274, CAM 1,746,906 27,523, CAP 333,690 11,026, CUM 532,897 18,766, ESS 2,663,517 29,307, GLO 980,302 23,790, HUD 2,153,677 18,580, HUN 437,598 13,044, MER 1,248,183 22,410, MID 2,753,142 47,579, MON 2,144,477 50,862, MOR 1,677,161 33,746, NOR 12, , NYC 215,915 4,131, OCE 1,964,014 63,174, PAS 1,704,184 22,641, PHL 46,468 1,367, ROC 81,740 2,163, SAL 225,725 8,239, SOM 1,099,927 21,799, SOU 34,493 2,468, SUS 508,674 16,572, UNI 1,824,093 21,860, WAR 371,169 13,012, WES 16, , Total 30,564, ,178,

What about the whole country?

Public Schools in the US

Nation-Wide Businesses RankState Sales VolumeNo. Businesses 1California$1,8891,579,342 2Texas$2,115999,331 3Florida$1,702895,586 4New York$1,822837,773 5Pennsylvania$2,134550,678 9New Jersey$1,919428,596 45Washington DC$1,31749,488 47Rhode Island$1,81446,503 48North Dakota$1,97844,518 49Delaware$2,10841,296 50Vermont$1,55439,230 51Wyoming$1,67935, Million Businesses {Name, address, Sales, #employees}

US_PersonTrip file will have.. 308,745,538 records – One for each person in US_Resident file Specifying 1,009,332,835 Daily Person Trips – Each characterized by a precise {oLat, oLon, oTime, dLat, dLon, Est_dTime} Will Perform Nationwide aTaxi AVO analysis Results ????

Trip Files are Available If You want to Play

Thank You Discussion!

Assuming PLANNERS continue to PLAN as they do now. – How will people “get around”? Assuming this new way of “getting around” offers different opportunities and constraints for PLANNERS to improve “Quality of Life”. – How will Zoning/Land-Use Change? – How will people “get around”? What about Level 4 Implications on Energy, Congestion, Environment?

Land-Use hasn’t changed – Trip ends don’t change! Assume Trip Distribution Doesn’t Change – Then it is only Mode Split. – Do I: Walk? Ride alone? Ride with someone? All about Ride-sharing What about Level 4 Implications on Energy, Congestion, Environment? Assuming Planners Don’t Change

“AVO < 1” RideSharing – “Daddy, take me to school.” (Lots today) “Organized” RideSharing – Corporate commuter carpools (Very few today) “Tag-along” RideSharing – One person decides: “I’m going to the store. Wanna come along”. Other: “Sure”. (Lots today) There exists a personal correlation between ride-sharers “Casual” RideSharing – Chance meeting of a strange that wants to go in my direction at the time I want to go “Slug”, “Hitch hiker” Kinds of RideSharing

“AVO < 1” RideSharing – Eliminate the “Empty Back-haul”; AVO Plus “Organized” RideSharing – Diverted to aTaxis “Tag-along” RideSharing – Only Primary trip maker modeled, “Tag-alongs” are assumed same after as before. “Casual” RideSharing – This is the opportunity of aTaxis – How much spatial and temporal aggregation is required to create significant casual ride-sharing opportunities. aTaxis and RideSharing

By walking to a station/aTaxiStand – At what point does a walk distance makes the aTaxi trip unattractive relative to one’s personal car? – ¼ mile ( 5 minute) max Like using an Elevator! Spatial Aggregation Elevator

No Change in Today’s Walking, Bicycling and Rail trips – Today’s Automobile trips become aTaxi or aTaxi+Rail trips with hopefully LOTS of Ride-sharing opportunities What about Level 4 Implications on Energy, Congestion, Environment? Assuming Planners Don’t Change

Pixelation of New Jersey NJ State Grid Zoomed-In Grid of Mercer

Pixelating the State with half-mile Pixels Pixelating the State with half-mile Pixels xPixel = floor{ * (longitude )} yPixel = floor{138.2 * (latitude – 38.9)) xPixel = floor{ * (longitude )} yPixel = floor{138.2 * (latitude – 38.9))

a PersonTrip {oLat, oLon, oTime (Hr:Min:Sec),dLat, dLon, Exected: dTime} a PersonTrip {oLat, oLon, oTime (Hr:Min:Sec),dLat, dLon, Exected: dTime} O O D P1P1 An aTaxiTrip {oYpixel, oXpixel, oTime (Hr:Min:Sec), } An aTaxiTrip {oYpixel, oXpixel, oTime (Hr:Min:Sec), } An aTaxiTrip {oYpixel, oXpixel, oTime (Hr:Min:Sec),dYpixel, dXpixel, Exected: dTime} An aTaxiTrip {oYpixel, oXpixel, oTime (Hr:Min:Sec),dYpixel, dXpixel, Exected: dTime}

P1P1 O Common Destination (CD) CD=1p: Pixel -> Pixel (p->p) Ride-sharing Common Destination (CD) CD=1p: Pixel -> Pixel (p->p) Ride-sharing TripMiles = L TripMiles = 2L TripMiles = 3L

P1P1 O PersonMiles = 3L aTaxiMiles = L AVO = PersonMiles/aTaxiMiles = 3 PersonMiles = 3L aTaxiMiles = L AVO = PersonMiles/aTaxiMiles = 3

Elevator Analogy of an aTaxi Stand Temporal Aggregation Departure Delay: DD = 300 Seconds Elevator Analogy of an aTaxi Stand Temporal Aggregation Departure Delay: DD = 300 Seconds Kornhauser Obrien Johnson 40 sec Henderson Lin 1:34 Popkin 3:47

Samuels 4:50 Henderson Lin Young 0:34 Popkin 2:17 Elevator Analogy of an aTaxi Stand 60 seconds later Elevator Analogy of an aTaxi Stand 60 seconds later Christie Maddow 4:12

By walking to a station/aTaxiStand – A what point does a walk distance makes the aTaxi trip unattractive relative to one’s personal car? – ¼ mile ( 5 minute) max By using the rail system for some trips – Trips with at least one trip-end within a short walk to a train station. – Trips to/from NYC or PHL Spatial Aggregation

D a PersonTrip from NYC (or PHL or any Pixel containing a Train station) a PersonTrip from NYC (or PHL or any Pixel containing a Train station) NYC O Princeton Train Station NJ Transit Rail Line to NYC, next Departure aTaxiTrip An aTaxiTrip {oYpixel, oXpixel, TrainArrivalTime, dYpixel, dXpixel, Exected: dTime} An aTaxiTrip {oYpixel, oXpixel, TrainArrivalTime, dYpixel, dXpixel, Exected: dTime}

By walking to a station/aTaxiStand – A what point does a walk distance makes the aTaxi trip unattractive relative to one’s personal car? – ¼ mile ( 5 minute) max By using the rail system for some trips – Trips with at least one trip end within a short walk to a train station. – Trips to/from NYC or PHL By sharing rides with others that are basically going in my direction – No trip has more than 20% circuity added to its trip time. Spatial Aggregation

P1P1 P2P2 O CD= 3p: Pixel ->3Pixels Ride-sharing

P1P1 P5P5 O P3P3

– I just need a Trip File for some Local {Precise O, Precise oTime, Precise D} For All Trips! – “Precise” Location: Within a Very Short Walk ~ Parking Space -> Front Door (Properly account for accessibility differences: conventionalAuto v aTaxi) – “Precise” oTime : “to the second” (Properly account for how long one must wait around to ride with someone else) What about Level 4 Implications on Energy, Congestion, Environment?

c

Results

Thank You Discussion!

Conventional Cars Drive Urban/City Planning

Current State of Public Transport… Not Good!: – Serves about 2% of all motorized trips – Passenger Miles (2007)*: 2.640x10 12 Passenger Car; 1.927x10 12 SUV/Light Truck; 0.052x10 12 All Transit; 0.006x10 12 Amtrak – Does a little better in “peak hour” and NYC 5% commuter trips NYC Met area contributes about half of all transit trips – Financially it’s a “train wreck” Table1-37

Transit’s Fundamental Problem… Transit is non-competitive to serve most travel demand – Travel Demand (desire to go from A to B in a time window  A & B are walk accessible areas, typically: – Very large number of very geographically diffused {A,B} pairs  is diffused throughout the day with only modest concentration in morning and afternoon peak hours The conventionalAutomobile at “all” times Serves… – Essentially all {A,B} pairs demand-responsively within a reasonable  Transit at “few” times during the day Serves… – a modest number of A & B on scheduled fixed routes – But very few {A,B} pairs within a reasonable  Transit’s need for an expensive driver Forces it to only offer infrequent scheduled fixed route service between few {A,B} pairs – But… Transit can become demand-responsive serving many {A,B} if the driver is made cheap and it utilizes existing roadway infrastructure mi.