Quantum Simulation of arbitrary Hamiltonians with superconducting qubits Colin Benjamin (NISER, Bhubaneswar) Collaborators: A. Galiautdinov, E. J. Pritchett, M. Geller, A. Sornborger and P. C. Stancil (UGA) J. M. Martinis (UCSB) 1
Outline Quantum Simulation Superconducting simulator Quantum statics: Hamiltonian mapping Quantum dynamics Application to-i. Random real Hamiltonian ii. Molecular collisions 2
Introduction Definition: Quantum simulation is a process in which a quantum computer simulates another quantum system(Lloyd, ‘96). Corollary: A classical computer can also simulate quantum systems. 3
Superconducting simulator(1) - 4
Superconducting simulator(2) Hamiltonian Rescaled energies 5
The 1-excitation subspace Superconducting simulator(3) H qc = f’s are function of g’s 6
Mapping(1) Random Hamiltonian Exact mapping: err=||H rand -H qc ||=0 7
Mapping (2) Molecular collision Na(3s)+He Na(3p)+He err=||H’ H qc ||=0 =|| H’ (t) || / [ 0.1 GHz] 8
Quantum dynamics: Molecular Collision(1) distance to time transformation R 2 =b 2 +v 2 t 2, v=1 Time dependent Hamiltonian 9
Quantum dynamics: Molecular Collision(2) Scattering Probabilities 10
Quantum dynamics: Quantum Computer(1) a(t)=e -iH’t a (-∞) =e -i(H’/ )( t) a(- ∞ ) a(t qc )=e -iHqc tqc a(0) dtqc/dt= tqc(- ∞ )=0 Energy-time rescaling 11
Quantum dynamics: Quantum Computer(2) Scattering probabilities 12
13 Quantum Computer: Fidelity and Leakage Simulation fidelityLeakage
Conclusion 14 proposed a superconducting quantum simulator can simulate any random Hamiltonian -mapping error: zero example simulation of a molecular collision (electron orbital scattering) - 99% fidelity