(some) Future CMB Constraints on fundamental physics Alessandro Melchiorri Universita’ di Roma, “La Sapienza” MIAMI2010, Fort Lauderdale December 15th.

Slides:



Advertisements
Similar presentations
PLANCK L’IMPATTO SULLA COSMOLOGIA ALESSANDRO MELCHIORRI.
Advertisements

Neutrinos and Cosmology Alessandro Melchiorri Universita di Roma, La Sapienza NOW 2010, Conca-Specchiulla September 7th 2010.
Cosmological Aspects of Neutrino Physics (I) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν.
Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7 Moriond 2010Shaun Thomas: UCL “A combined constraint on the Neutrinos” Arxiv:
Eloisa Menegoni ICRA and INFN, University of Rome “La Sapienza” Cosmological constraints on variations of fundamental constants Miami2010, Fort Lauderdale,
Neutrino Flavor ratio on Earth and at Astrophysical sources K.-C. Lai, G.-L. Lin, and T. C. Liu, National Chiao Tung university Taiwan INTERNATIONAL SCHOOL.
What mass are the smallest protohalos in thermal WIMP dark-matter models? Kris Sigurdson Institute for Advanced Study Space Telescope Science Institute.
University of Rome “La Sapienza”
NEUTRINO PHYSICS FROM PRECISION COSMOLOGY STEEN HANNESTAD 17 AUGUST 2010 – UNIVERSENET, COPENHAGEN e    
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
Suzanne Staggs (Princeton) Rencontres de Blois, 1 June 2011 The Atacama Cosmology Telescope (ACT): Still More Cosmology from the Cosmic Microwave Background.
Constraints on the very early universe from thermal WIMP Dark Matter Mitsuru Kakizaki (Bonn Univ.) Mitsuru Kakizaki (Bonn Univ.) July 27, Karlsruhe.
Observational Cosmology - a unique laboratory for fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn.
NEUTRINOS IN COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS ERICE, 17 SEPTEMBER 2005 e    
The Curvature Perturbation from Vector Fields: the Vector Curvaton Case Mindaugas Karčiauskas Dimopoulos, Karčiauskas, Lyth, Rodriguez, JCAP 13 (2009)
Physics 133: Extragalactic Astronomy and Cosmology Lecture 11; February
Constraints on the Dark Side of the Universe Alessandro Melchiorri.
What is the Dark Matter? What about “ordinary” non-luminous matter (basically, made from proton, neutrons and electrons)? “Dead stars” (White Dwarfs,
RELIC NEUTRINOS: NEUTRINO PROPERTIES FROM COSMOLOGY Sergio Pastor (IFIC) ν.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
NEUTRINO PHYSICS AND COSMOLOGY STEEN HANNESTAD, Aarhus University BLOIS, 31 MAY 2012 e    
Signe Riemer-Sørensen, University of Queensland In collaboration with C. Blake (Swinburne), D. Parkinson (UQ), T. Davis (UQ) and the WiggleZ collaboration.
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
NEUTRINO PHYSICS FROM COSMOLOGY EVIDENCE FOR NEW PHYSICS? STEEN HANNESTAD, Aarhus University NuHorizons 2011 e    
Higgs inflation in minimal supersymmetric SU(5) GUT Nobuchika Okada University of Alabama, Tuscaloosa, AL In collaboration with Masato Arai & Shinsuke.
The CMB and Neutrinos. We can all measure the CMB T CMB = \ K CMB approx 1% of TV noise! 400 photons/cc at 0.28 eV/cc.
Inflationary Freedom and Cosmological Neutrino Constraints Roland de Putter JPL/Caltech CosKASI 4/16/2014.
I Neutrini in Cosmologia Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 Scuola di Formazione Professionale INFN Padova, 16 Maggio.
NEUTRINO PHYSICS AND COSMOLOGY STEEN HANNESTAD, Aarhus University COSMO, 14 SEPTEMBER 2012 e    
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
February 23, 2005Neutrino Telescopes, Venice Comparing Solar and KamLAND Data Comparing Solar and KamLAND Data Carlos Pena Garay IAS, Princeton ~
The Cosmological Energy Density of Neutrinos from Oscillation Measurements Kev Abazajian Fermilab June 10, 2003 NuFact 03 – Fifth International Workshop.
NEUTRINO COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS LAUNCH WORKSHOP, 21 MARCH 2007 e    
Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
Forecasting the Axiverse David J. E. Marsh, Berkeley, 1/12/11 Forecasting the Axiverse, David J. E. Marsh, Berkeley, 1/12/111/35 David J. E. Marsh, Edward.
BOOMERanG Launch (Dec. 28, 1998) EPS HEPP Prizes – Grenoble July 25, 2011 P. de Bernardis – Sapienza – Roma.
Massive neutrinos and their impact on cosmology Paolo Serra in collaboration with R. Bean, Dept. of Astronomy, Ithaca, NY A. De La Macorra, Istituto.
Weighing neutrinos with Cosmology Fogli, Lisi, Marrone, Melchiorri, Palazzo, Serra, Silk hep-ph , PRD 71, , (2005) Paolo Serra Physics Department.
New Nuclear and Weak Physics in Big Bang Nucleosynthesis Christel Smith Arizona State University Arizona State University Erice, Italy September 17, 2010.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
NEUTRINO PHYSICS FROM COSMOLOGY e     STEEN HANNESTAD, SDU HEP2003, 18 JULY 2003 e  
BBN: Constraints from CMB experiments Joanna Dunkley University of Oxford IAUS Geneva, Nov
Cosmic Microwave Background Acoustic Oscillations, Angular Power Spectrum, Imaging and Implications for Cosmology Carlo Baccigalupi, March 31, 2004.
1 Neutrino properties from cosmological measurements Cosmorenata June’13 Olga Mena IFIC-CSIC/UV.
Cosmological aspects of neutrinos (III) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
Cosmological mass bounds on hot-dark matter axions Alessandro MIRIZZI (MPI, Munich) NOW Neutrino Oscillation Workshop Conca Specchiulla, September.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
G. Mangano 1 Relic Neutrino Distribution Gianpiero Mangano INFN, Sezione di Napoli Italy.
NEUTRINOS IN THE INTERGALACTIC MEDIUM Matteo Viel, Martin Haehnelt. Volker Springel: arXiv today Rencontres de Moriond – La Thuile 15/03/2010.
Evolution of perturbations and cosmological constraints in decaying dark matter models with arbitrary decay mass products Shohei Aoyama Nagoya University.
Determining cosmological parameters with the latest observational data Hong Li TPCSF/IHEP
Precise calculation of the relic neutrino density Sergio Pastor (IFIC) ν JIGSAW 2007 TIFR Mumbai, February 2007 In collaboration with T. Pinto, G, Mangano,
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
DESY, 30 September 2008 Julien Lesgourgues (CERN & EPFL)
PRECISION COSMOLOGY AND NEW PHYSICS STEEN HANNESTAD, AARHUS UNIVERSITY NExT, SOUTHAMPTON, 27 NOVEMBER 2013.
First Cosmology Results from Planck Alessandro Melchiorri University of Rome La Sapienza On behalf of the Planck collaboration.
Cosmological aspects of neutrinos (II) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
NEUTRINOS IN NUCLEOSYNTHESIS AND STRUCTURE FORMATION STEEN HANNESTAD UNIVERSITY OF SOUTHERN DENMARK NOW2004, 17 SEPTEMBER 2004 e    
Precision cosmology, status and perspectives Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 FA-51 Meeting Frascati, June 22nd 2010.
Cosmological constraints on neutrino mass Francesco De Bernardis University of Rome “Sapienza” Incontro Nazionale Iniziative di Fisica Astroparticellare.
Jan Hamann Rencontres de Moriond (Cosmology) 21st March 2016
Mildly Mixed Coupled cosmological models
Precision cosmology and neutrinos
Precision cosmology, status and perspectives
(some) Future CMB Constraints on fundamental physics
Determining cosmological parameters with current observational data
ν Are we close to measuring the neutrino hierarchy? Filipe B. Abdalla
Presentation transcript:

(some) Future CMB Constraints on fundamental physics Alessandro Melchiorri Universita’ di Roma, “La Sapienza” MIAMI2010, Fort Lauderdale December 15th 2010

Komatsu et al, 2010, New WMAP results from 7 years of observations

How to get a bound on a cosmological parameter DATA Fiducial cosmological model: ( Ω b h 2, Ω m h 2, h, n s, τ, Σ m ν ) PARAMETER ESTIMATES

New Measurements, More Parameters ! Neutrino masses Neutrino effective number Primordial Helium

Small scale CMB can probe Helium abundance at recombination. See e.g., K. Ichikawa et al., Phys.Rev.D78:043509,2008 R. Trotta, S. H. Hansen, Phys.Rev. D69 (2004)

Komatsu et al, 2010,

Cosmological (Active) Neutrinos Neutrinos are in equilibrium with the primeval plasma through weak interaction reactions. They decouple from the plasma at a temperature We then have today a Cosmological Neutrino Background at a temperature: With a density of: That, for a massive neutrino translates in:

Normal hierarchyInverted hierarchy If neutrino masses are hierarchical then oscillation experiments do not give information on the absolute value of neutrino masses Moreover neutrino masses can also be degenerate SOLAR KAMLAND ATMO. K2K

Testing the neutrino hierarchy Inverted Hierarchy predicts: Normal Hierarchy predicts: Degenerate Hierarchy predicts: we assume

Current constraints on neutrino mass from Cosmology (Fogli et al, 2010 in preparation). Blue: WMAP-7 Red: w7+SN+Bao+H0 Green: w7+CMBsuborb+SN+LRG+H0 See also: M. C. Gonzalez-GarciaM. C. Gonzalez-Garcia, Michele Maltoni, Jordi Salvado, arXiv: Michele MaltoniJordi SalvadoarXiv: Toyokazu SekiguchiToyokazu Sekiguchi, Kazuhide Ichikawa, Tomo Takahashi, Lincoln Greenhill, arXiv: Kazuhide IchikawaTomo TakahashiLincoln Greenhill Extreme (sub 0.3 eV limits): F. De Bernardis et al, Phys.Rev.D78:083535,2008, Thomas et al. Phys. Rev. Lett. 105, (2010) [eV] Current constraints (assuming  CDM):  m <1.3 [eV] CMB (but see Maria’s talk)  m < [eV] CMB+other  m <0.3 [eV] CMB+LSS (extreme)

Blue: WMAP-7 Red: w7+SN+Bao+H0 Green: w7+CMBsuborb+SN+LRG+H0 Current constraints on neutrino mass from Cosmology (Fogli et al, 2010 in preparation). Constraints weaken by 30-50% when «dark energy» is included.

Komatsu et al, 2010, Neutrino background. Changes early ISW. Hint for N>3 ?

Gianpiero ManganoGianpiero Mangano, Alessandro Melchiorri, Olga Mena, Gennaro Miele, Anze SlosarAlessandro MelchiorriOlga MenaGennaro MieleAnze Slosar Journal-ref: JCAP0703:006,2007

J. Hamann et al, arXiv: arXiv: Active massless neutrinos+ N s massive neutrinos 3 Active massive neutrinos + N s massless neutrinos

Latest results from ACT, Dunkley et al. 2010

Planck Satellite launch 14/5/2009

Planck First Light Survey (September 2009). Experiment is working as expected

Blue: current data Red: Planck

Galli, Martinelli, Melchiorri, Pagano, Sherwin, Spergel, PRD submitted, arXiv: Let’s consider not only Planck but also ACTpol (From Atacama Cosmology Telescope, Ground based, results expected by 2013) CMBpol (Next CMB satellite, 2020 ?)

Galli, Martinelli, Melchiorri, Pagano, Sherwin, Spergel, PRD submitted, arXiv: Blue: Planck  Yp=0.01 Red: Planck+ACTpol  Yp=0.006 Green: CMBPol  Yp=0.003 Constraints on Helium Abundance

Galli, Martinelli, Melchiorri, Pagano, Sherwin, Spergel, PRD submitted, arXiv: Constraints on Neutrino Number Blue: Planck  N =0.18 Red: Planck+ACTpol  N =0.11 Green: CMBPol  N =0.044

Galli, Martinelli, Melchiorri, Pagano, Sherwin, Spergel, PRD submitted, arXiv: Constraints on Neutrino Mass Blue: Planck  m  Red: Planck+ACTpol  m  Green: CMBPol  m 

Testing the neutrino hierarchy Inverted Hierarchy predicts: Normal Hierarchy predicts: Degenerate Hierarchy predicts: we assume

Constraints on Neutrino Masses from CMB [eV] Black: Planck Red: Planck+ New exp bol. Blue: Planck+ New exp bol. Limits at 95% c.l.: Combining a new CMB experiment to Planck coud improve the bounds on the neutrino mass by a factor 3. This would: Falsify Degenerate Hierarchy and Probe the Inverted Hierarchy

Constraints on Neutrino Masses from CMB+Priors Red: 1000 riv+ Prior 1% H 0 + Priori 2%  m Blue: 1000 riv+ Prior 1% H 0 + Priori 2%  m Red Dashed: 1000 riv+ Prior 0.5% H 0 + Priori 1%  m Blue Dashed: 1000 riv+ Prior 0.5% H 0 + Priori 1%  m Limits at 95% c.l.: With external priors on the Hubble parameter And the matter density also the Normal Hierarchy can be probed: safe detection of a neutrino mass.

Recent CMB measurements fully confirm  -CDM. With future measurements constraints on new parameters related to laboratory Physics could be achieved. In 2012 from Planck we will know: -If the total neutrino mass is less than 0.5eV. -If there is an extra background of relativistic particles. -Helium abundance with 0.01 accuracy.