MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

Slides:



Advertisements
Similar presentations
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Advertisements

MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH15_Lec-19_sec_4-2_Logarithmic_Fcns.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
5.1 Accumulating Change: Introduction to results of change
Chapter 5 Integration.
MTH15_Lec-16_sec_3-4_Optimization.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH15_Lec-07_sec_2-1_Differeniatation-Basics_.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.
The First Fundamental Theorem of Calculus. First Fundamental Theorem Take the Antiderivative. Evaluate the Antiderivative at the Upper Bound. Evaluate.
Chapter 5 Key Concept: The Definite Integral
The Definite Integral.
MTH15_Lec-02_Fa13_sec_1-2_Fcn_Graphs.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH16_Lec-14_sec_10-1_Infinite_Series.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH15_Lec-15_sec_3-3_Curve_Sketching.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH15_Lec-18_sec_4-1_Exponential_Fcns.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH15_Lec-22_sec_5-1_Integration.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
The Integral chapter 5 The Indefinite Integral Substitution The Definite Integral As a Sum The Definite Integral As Area The Definite Integral: The Fundamental.
Chapter 5 .3 Riemann Sums and Definite Integrals
MTH15_Lec-05_sec_1-5_Limits_.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH15_Lec-25_sec_5-4_Definite_Integral_Apps.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH15_Lec-09_sec_2-4_Derivative_Chain_Rule_.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH15_Lec-04_sec_1-4_Functional_Models_.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH15_Lec-10_sec_2-5_Incrementals_.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
6.3 Definite Integrals and the Fundamental Theorem.
MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH15_Lec-23_sec_5-2_Integration_Substitution.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH16_Lec-09_sec_7-6_Double_Integrals.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH15_Lec-11_sec_2-6_Implicit_Diff_.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
State Standard – 16.0a Students use definite integrals in problems involving area. Objective – To be able to use the 2 nd derivative test to find concavity.
Areas & Definite Integrals TS: Explicitly assessing information and drawing conclusions.
MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
ENGR-25_Lec-28_Excel-1.ppt 1 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Bruce Mayer, PE Licensed Electrical.
MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
The Definite Integral.
5.2 Definite Integrals Bernhard Reimann
Dr. Omar Al Jadaan Assistant Professor – Computer Science & Mathematics General Education Department Mathematics.
5.2 Definite Integrals. When we find the area under a curve by adding rectangles, the answer is called a Riemann sum. subinterval partition The width.
MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
Calculus Date: 3/7/2014 ID Check Obj: SWBAT connect Differential and Integral Calculus Do Now: pg 307 #37 B #23 HW Requests: SM pg 156; pg 295 #11-17 odds,
Riemann Sums and The Definite Integral. time velocity After 4 seconds, the object has gone 12 feet. Consider an object moving at a constant rate of 3.
5.2 Definite Integrals Created by Greg Kelly, Hanford High School, Richland, Washington Revised by Terry Luskin, Dover-Sherborn HS, Dover, Massachusetts.
Chapter 6 Integration Section 5 The Fundamental Theorem of Calculus (Day 1)
File = MTH55_Lec-04_ec_2-2_Fcn_Algebra.pp 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer
MTH16_Lec-14_sec_10-1_Infinite_Series.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
4.3: Definite Integrals Learning Goals Express the area under a curve as a definite integral and as limit of Riemann sums Compute the exact area under.
Copyright (c) 2003 Brooks/Cole, a division of Thomson Learning, Inc. Integration 5 Antiderivatives Substitution Area Definite Integrals Applications.
Definite Integrals, The Fundamental Theorem of Calculus Parts 1 and 2 And the Mean Value Theorem for Integrals.
The Fundamental Theorem of Calculus Area and The Definite Integral OBJECTIVES  Evaluate a definite integral.  Find the area under a curve over a given.
MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
§2.1 Basics of Differentiation
Licensed Electrical & Mechanical Engineer
§6.2 Numerical Integration
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
§2.6 Implicit Differentiation
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.
Section 6. 3 Area and the Definite Integral Section 6
Licensed Electrical & Mechanical Engineer
§2.4 Derivative Chain Rule
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
6.2 Definite Integrals.
Presentation transcript:

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Chabot Mathematics §5.3 Fundamental Theorem of Calc

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 2 Bruce Mayer, PE Chabot College Mathematics Review §  Any QUESTIONS About §5.2 → AntiDerivatives by Substitution  Any QUESTIONS About HomeWork §5.22 → HW

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 3 Bruce Mayer, PE Chabot College Mathematics §5.3 Learning Goals  Show how area under a curve can be expressed as the limit of a sum  Define the definite integral and explore its properties  State the fundamental theorem of calculus, and use it to compute definite integrals  Use the fundamental theorem to solve applied problems involving net change  Provide a geometric justification of the fundamental theorem

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 4 Bruce Mayer, PE Chabot College Mathematics Area Under the Curve (AUC)  The AUC has many Applications in Business, Science, and Engineering Calculation of Geographic Areas River Channel Cross Section Wind-Force Loading

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 5 Bruce Mayer, PE Chabot College Mathematics Area Under Function Graph  For a Continuous Function, approximate the area between the Curve and the x-Axis by Summing Vertical Strips Use Rectangles of Equal Width –Three Possible Forms Left end pointsRight end pointsMidpoints Strip Width (n strips)

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 6 Bruce Mayer, PE Chabot College Mathematics Example: Strip Sum  Approximate the area under the graph of  Use n = 4 (4 strips) Strip MidPoints

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 7 Bruce Mayer, PE Chabot College Mathematics Example: Strip Sum GamePlan

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 8 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 24Jul13 % XY_Area_fcn_Graph_6x6_BlueGreen_BkGnd_Template_1306.m % % The FUNCTION xmin = 0; xmax = 2; ymin = 0; ymax = 8; % The FUNCTION x = linspace(xmin,xmax,20); y = 2*x.^2; % % The ZERO Lines zxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([ ]); % Chg Plot BackGround to Blue-Green % Now make AREA Plot area(x,y, 'FaceColor', [1.8 1], 'LineWidth', 3), axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = f(x) = 2x^2'),... title(['\fontsize{16}MTH15 Area by Strip Addition',]),... annotation('textbox',[ ], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'Bruce Mayer, PE 24JUul13','FontSize',7) hold on set(gca,'Layer','top') plot(x,y, 'LineWidth', 3),

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 9 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 24Jul13 % % The Limits xmin = 0; xmax = 2; ymin = 0; ymax = 8; % The FUNCTION x = linspace(xmin,xmax,500); y = 2*x.^2; x1 = [0.25:.5:1.75]; y1 = 2*x1.^2 % % The ZERO Lines zxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([ ]); % Chg Plot BackGround to Blue-Green plot(x,y, 'LineWidth', 4),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = f(x) = 2x^2'),... title(['\fontsize{16}MTH15 Area by Strip Addition',]),... annotation('textbox',[ ], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'Bruce Mayer 24Jul13','FontSize',7) hold on area([(x1(1)-.25)*ones(1,100),(x1(1)+.25)*ones(1,100)],[y1(1)*ones(1,100),y1(1)*ones(1,100)],'FaceColor',[1.8 1]) area([(x1(2)-.25)*ones(1,100),(x1(2)+.25)*ones(1,100)],[y1(2)*ones(1,100),y1(2)*ones(1,100)],'FaceColor',[1.8 1]) area([(x1(3)-.25)*ones(1,100),(x1(3)+.25)*ones(1,100)],[y1(3)*ones(1,100),y1(3)*ones(1,100)],'FaceColor',[1.8 1]) area([(x1(4)-.25)*ones(1,100),(x1(4)+.25)*ones(1,100)],[y1(4)*ones(1,100),y1(4)*ones(1,100)],'FaceColor',[1.8 1]) plot(x,y, 'LineWidth', 4) set(gca,'Layer','top') plot(x1,y1,'g d', 'LineWidth', 4) plot([x1(1)-.25,x1(1)+.25],[y1(1),y1(1)], 'm', [x1(2)-.25,x1(2)+.25],[y1(2),y1(2)], 'm',... [x1(3)-.25,x1(3)+.25],[y1(3),y1(3)], 'm', [x1(4)-.25,x1(4)+.25],[y1(4),y1(4)], 'm','LineWidth',2) plot([x1(1)-.25,x1(1)-.25],[0,y1(1)], 'm',[x1(2)-.25,x1(2)-.25],[0,y1(2)], 'm',... [x1(3)-.25,x1(3)-.25],[0,y1(3)], 'm', [x1(4)-.25,x1(4)-.25],[0,y1(4)], 'm', 'LineWidth', 2) set(gca,'XTick',[xmin:0.5:xmax]); set(gca,'YTick',[ymin:1:ymax])

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 10 Bruce Mayer, PE Chabot College Mathematics Example: Strip Sum  The Algebra midpoints

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 11 Bruce Mayer, PE Chabot College Mathematics Area under a Curve  GOAL: find the exact area under the graph of a function; i.e., the curve  PLAN: Use an infinite number of strips of equal width and compute their area with a limit. a b Width: (n strips)

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 12 Bruce Mayer, PE Chabot College Mathematics Area Under a Curve  Function, f(x), on interval [a,b] is: Continuous NonNegative  Then the Area Under the Curve, A  The x 1, x 2, …, x n-1,x n are arbitrary, n SubIntervals each with width (b − a)/n a b

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 13 Bruce Mayer, PE Chabot College Mathematics Riemann Sum ∑f(x k )·∆x  For a Continuous, NonNeg fcn over [a,b] divided into n-intervals of Equal Width, ∆x = (b−a)/n, The AUC can be approximated by the sum the area of Vertical Strips Riemann ∑

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 14 Bruce Mayer, PE Chabot College Mathematics Riemann ∑ → Definite Integral  For a Continuous, NonNeg fcn over [a,b] divided into n-intervals of Equal Width, ∆x = (b−a)/n, The AUC can be calculated EXACTLY by the Riemann sum as the number of strips becomes infinite.  This Process of finding an Infinite Sum is called “Integration”; "to render (something) whole," from Latin integratus, past participle of integrare "make whole,"

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 15 Bruce Mayer, PE Chabot College Mathematics Riemann ∑ → Definite Integral  As the No. of Strips increase the AUC Calculation becomes more accurate  The Riemann-Sum to Definite-Integral Twenty StripsFifty Strips

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 16 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 24Jul13 % % The Limits xmin = 0; xmax = 2; ymin = 0; ymax = 8; % The FUNCTION x = linspace(xmin,xmax,500); y = 2*x.^2; x1 = [1/20:1/10:39/20]; y1 = 2*x1.^2; % The ZERO Lines zxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([ ]); % Chg Plot BackGround to Blue-Green plot(x,y, 'LineWidth', 4),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = f(x) = 2x^2'),... title(['\fontsize{16}MTH15 Area by Strip Addition',]),... annotation('textbox',[ ], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'Bruce Mayer 24Jul13','FontSize',7) hold on bar(x1,y1, 'BarWidth',1, 'FaceColor', [1.8 1], 'EdgeColor','b', 'LineWidth', 2) set(gca,'XTick',[xmin:0.5:xmax]); set(gca,'YTick',[ymin:1:ymax]) set(gca,'Layer','top') plot(x,y, 'LineWidth', 3)

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 17 Bruce Mayer, PE Chabot College Mathematics Integration Symbol lower limit of integration upper limit of integration integrand variable of integration (dummy variable) It is called a dummy variable because the answer does not depend on the symbol chosen; it depends only on a&b Definite Integral Symbology

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 18 Bruce Mayer, PE Chabot College Mathematics Recall Fundamental Theorem  The fundamental theorem* of calculus is a theorem that links the concept of the derivative of a function with the concept of the integral. Part-1: Definite Integral (Area Under Curve) Part-2: AntiDerivative * The Proof is Beyond the Scope of MTH15

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 19 Bruce Mayer, PE Chabot College Mathematics Fundamental Theorem – Part2  Previously we stated that the AntiDerivative of f(x) is F(x), so then  Now consider the definite Integral (AUC) Relationship to the AntiDerivative

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 20 Bruce Mayer, PE Chabot College Mathematics DefiniteIntegral↔AntiDerivative  That is, The AUC for a continuous Function, f(x), spanning domain [a,b] is the AntiDerivative evaluated at b minus the AntiDerivative evaluated at a. –D. F. Riddle, Calculus and Analytical Geometry, Belmont, CA, Wadsworth, 1974, pp , pg. 770

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 21 Bruce Mayer, PE Chabot College Mathematics Example  Find AUC  Find the area under the graph of y = 2x 3  Then Gives the area since 2x 3 is nonnegative on [0, 2]. AntiderivativeFund. Thm. of Calculus

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 22 Bruce Mayer, PE Chabot College Mathematics Rules for Definite Integrals 1.Constant Rule: for any constant, k 2.Sum/Diff Rule: 3.Zero Width Rule 4.Domain Reversal Rule

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 23 Bruce Mayer, PE Chabot College Mathematics Rules for Definite Integrals 5.SubDivision Rule, for (a<b<c)

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 24 Bruce Mayer, PE Chabot College Mathematics Example  Eval Definite Integral  Find a Value for  The Reduction using the Term-by-Term rule

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 25 Bruce Mayer, PE Chabot College Mathematics Example  Def Int by Substitution  Find:  Let:  Then find dx(du) and u(x=0), and u(x=1) Clarify Limits

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 26 Bruce Mayer, PE Chabot College Mathematics Example  Def Int by Substitution  SubOut x 2 +3x, and the Limits  Dividing out the 2x+3  Then  Thus Ans x

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 27 Bruce Mayer, PE Chabot College Mathematics The Average Value of a Function  At y = y avg there at EQUAL AREAS above & below the Avg-Line Avg Line

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 28 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 24Jul13 % Area_Between_fcn_Graph_BlueGreen_BkGnd_Template_1306.m % Ref: E. B. Magrab, S. Azarm, B. Balachandran, J. H. Duncan, K. E. % Herhold, G. C. Gregory, "An Engineer's Guide to MATLAB", ISBN % , Pearson Higher Ed, 2011, pp % clc; clear % The Function xmin = 0; xmax = 16; ymin = 0; ymax = 350; xct = 1000 x = linspace(xmin,xmax,xct); y1 =.5*x.^3-9*x.^2+11*x+330; yavg = mean(y1) y2 = yavg*ones(1,xct) % % % Find Zeros plot(x,y1, x,y2, 'k','LineWidth', 2), axis([0 xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = f(x)'),... title(['\fontsize{16}MTH15 Meaning of Avg',]),... annotation('textbox',[ ], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'Bruce Mayer, PE 24Jul13','FontSize',7) display('Showing 2Fcn Plot; hit ANY KEY to Continue') % "hold" = Retain current graph when adding new graphs hold on % nct = 500 xn = linspace(xmin, xmax, nct); fill([xn,fliplr(xn)],[.5*xn.^3-9*xn.^2+11*xn+330, fliplr(yavg*ones(1,nct))],'m'),grid plot(x,y1), grid

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 29 Bruce Mayer, PE Chabot College Mathematics The Average Value of a Function  Mathematically - If f is integrable on [a, b], then the average value of f over [a, b] is  Example  Find the Avg Value:  Use Average Definition:

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 30 Bruce Mayer, PE Chabot College Mathematics Net Change  If the Rate of Change (RoC), dQ/dx = Q’(x) is continuous over the interval [a,b], then the NET CHANGE in Q(x) is Given by

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 31 Bruce Mayer, PE Chabot College Mathematics Example  Find Net Change  A small importer of Gladiator merchandise has modeled her monthly profits since the company was created on January 1, 1997 by the formula Where –P ≡ $-Profit in 100’s of Dollars ($c or c-Notes) –t ≡ year of operation for the company

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 32 Bruce Mayer, PE Chabot College Mathematics Example  Find Net Change  What is the importer’s net change in profit between the beginning of the years 2000 and 2003?  SOLUTION:  Recall t is in years after 1997, Thus Year 2000 corresponds to t = 3 Year 2003 corresponds to t = 6  Then in this case the Net Change in Profit over [3,6] →

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 33 Bruce Mayer, PE Chabot College Mathematics Example  Find Net Change  Thus Her monthly profits increased by about $1, between 2000 & 2003

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 34 Bruce Mayer, PE Chabot College Mathematics WhiteBoard Work  Problems From §5.3 P74 → Water Consumption P80 → Distance Traveled

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 35 Bruce Mayer, PE Chabot College Mathematics All Done for Today Students Should Calc

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 36 Bruce Mayer, PE Chabot College Mathematics All Done for Today Fundamental Theorem Part-1

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 37 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Chabot Mathematics Appendix –

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 38 Bruce Mayer, PE Chabot College Mathematics Let area under the curve from a to x. (“ a ” is a constant) Then: Fundamental Theorem Proof

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 39 Bruce Mayer, PE Chabot College Mathematics min f max f The area of a rectangle drawn under the curve would be less than the actual area under the curve. The area of a rectangle drawn above the curve would be more than the actual area under the curve. h

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 40 Bruce Mayer, PE Chabot College Mathematics As h gets smaller, min f and max f get closer together. This is the definition of derivative! Take the anti-derivative of both sides to find an explicit formula for area. initial value

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 41 Bruce Mayer, PE Chabot College Mathematics As h gets smaller, min f and max f get closer together. Area under curve from a to x = antiderivative at x minus antiderivative at a.

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 42 Bruce Mayer, PE Chabot College Mathematics ConCavity Sign Chart abc −−−−−−++++++−−−−−− x ConCavity Form d 2 f/dx 2 Sign Critical (Break) Points InflectionNO Inflection Inflection

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 43 Bruce Mayer, PE Chabot College Mathematics

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 44 Bruce Mayer, PE Chabot College Mathematics

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 45 Bruce Mayer, PE Chabot College Mathematics

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 46 Bruce Mayer, PE Chabot College Mathematics

MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 47 Bruce Mayer, PE Chabot College Mathematics