1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,

Slides:



Advertisements
Similar presentations
1 Research & Development on SOI Pixel Detector H. Niemiec, T. Klatka, M. Koziel, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor, M. Szelezniak AGH – University.
Advertisements

1 Full-size Monolithic Active Pixel Sensors in SOI Technology - design considerations, simulations and measurements results on behalf of: M. Jastrzab,
   >>> 
Design and Implementation a 8 bits Pipeline Analog to Digital Converter in The Technology 0.6 μm CMOS Process Eri Prasetyo.
MDT-ASD PRR C. Posch30-Aug-02 1 Specifications, Design and Performance   Specifications Functional Analog   Architecture Analog channel Programmable.
Snowmass 2005 SOI detector R&D Massimo Caccia, Antonio Bulgheroni Univ. dell’Insubria / INFN Milano (Italy) M. Jastrzab, M. Koziel, W. Kucewicz, H. Niemiec.
5ns Peaking Time Transimpedance Front End Amplifier for the Silicon Pixel Detector in the NA62 Gigatracker E. Martin a,b J. Kaplon b, A. Ceccucci b, P.
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
NA62 front end architecture and performance Jan Kaplon/Pierre Jarron.
FCP130 Fermi CMS Pixel Test Chip
GOSSIPO-2 chip: a prototype of read-out pixel array featuring high resolution TDC-per-pixel architecture. Vladimir Gromov, Ruud Kluit, Harry van der Graaf.
Timepix2 power pulsing and future developments X. Llopart 17 th March 2011.
Evaluation of 65nm technology for front-end electronics in HEP Pierpaolo Valerio 1 Pierpaolo Valerio -
14-5 January 2006 Luciano Musa / CERN – PH / ED General Purpose Charge Readout Chip Nikhef, 4-5 January 2006 Outline  Motivations and specifications 
Status ‘Si readout’ TPC at NIKHEF NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay CEA.
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft KIT, Institut für Prozessdatenverarbeitung.
Design of the Front-end Electronics for the GOSSIPO chip. Vladimir Gromov Electronics Technology NIKHEF, Amsterdam, the Netherlands CERN, July the 22 th,
A multi-chip board for X-ray imaging in build-up technology Alessandro Fornaini, NIKHEF, Amsterdam 4 th International Workshop on Radiation Imaging Detectors.
L. Gallin-Martel, D. Dzahini, F. Rarbi, O. Rossetto
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
Pierpaolo Valerio.  CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector  Main features: ◦ small pixel pitch (25 μm), ◦ Simultaneous.
Silicon Sensor with Readout ASICs for EXAFS Spectroscopy Gianluigi De Geronimo, Paul O’Connor Microelectronics Group, Instrumentation Division, Brookhaven.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
FEE2006, Perugia Simultaneous Photon Counting and Charge Integrating Readout Electronics for X-ray Imaging Hans Krüger, University of Bonn, Germany University.
Gossipo-3: a prototype of a Front-end Pixel Chip for Read-out of Micro-Pattern Gas Detectors. TWEPP-09, Paris, France. September 22, Christoph Brezina.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Design & Development of an Integrated Readout System for Triple-GEM Detectors Alessandro PEZZOTTA III Year PhD Seminar, Cycle XXVIII 22 September 2015.
Specifications & motivation 2  Lowering integration time would significantly reduce background  Lowering power would significantly reduce material budget.
VIP1: a 3D Integrated Circuit for Pixel Applications in High Energy Physics Jim Hoff*, Grzegorz Deptuch, Tom Zimmerman, Ray Yarema - Fermilab *
Update on CLICpix design
GOSSIP a new vertex detector for ATLAS Harry van der Graaf NIKHEF, Amsterdam Univ. of Bonn, Nov 23, 2006.
Analog Building Blocks for P326 Gigatracker Front-End Electronics
Ivan Peric, CLIC Workshop HVCMOS for CLICPix V2.
GOSSIP & the ATLAS SCT Upgrade Max Chefdeville NIKHEF, Amsterdam ATLAS Upgrade Workshop CERN, Oct 1, 2006.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
A. Rivetti Villa Olmo, 7/10/2009 Lepix: monolithic detectors for particle tracking in standard very deep submicron CMOS technologies. A. RIVETTI I.N.F.N.
A view on electronics for the prototype of the GOSSIP detector in 0.13um CMOS Technology. Vladimir Gromov Electronics Technology NIKHEF, Amsterdam, the.
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
Gossip/GridPix – guidelines, facts, and questions for review Version 1: Norbert Version 2: Tatsuo Version 3: Werner.
BeamCal Electronics Status FCAL Collaboration Meeting LAL-Orsay, October 5 th, 2007 Gunther Haller, Dietrich Freytag, Martin Breidenbach and Angel Abusleme.
LHCb Vertex Detector and Beetle Chip
LC Power Distribution & Pulsing Workshop, May 2011 Super-ALTRO Demonstrator Test Results LC Power Distribution & Pulsing Workshop, May nd November.
Pixel detector development: sensor
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
Status report NIKHEF NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay CEA DAPNIAMaximilien.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
2004 Multichannel integrated circuits for digital X-ray imaging with energy windowing Krzysztof Świentek Department of Nuclear Electronics FPNT, AGH Kraków.
(Re)design of the C3PD analog pixel 1. The starting point for the design was the CCPDv3 front-end (this presentation tries to follow the way the design.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
FPIX2: A rad-hard pixel readout chip for BTeV David Christian Fermilab Homestead September 14, 2000 Vertex 2000 f.
Development of a Front-end Pixel Chip for Readout of Micro-Pattern Gas Detectors. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,
CBM 12 th Meeting, October 14-18, 2008, Dubna Present status of the first version of NIHAM TRD-FEE analogic CHIP Vasile Catanescu and Mihai Petrovici NIHAM.
R. Kluit Nikhef Amsterdam R. Kluit Nikhef Amsterdam Gossopo3 3 rd Prototype of a front-end chip for 3D MPGD 1/27/20091GOSSIPPO3 prototype.
1 C. Ballif 3, W. Dabrowski 2, M. Despeisse 3, P. Jarron 1, J. Kaplon 1, K. Poltorak 1,2 N. Wyrsch 3 1 CERN, Geneva, Switzerland 2 Faculty of Physics and.
Technical status of the Gossipo-3 : starting point for the design of the Timepix-2 March 10, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
First measurements of the Gossipo-3 CERN, Geneve March 24, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
S.Zucca a,c, L. Gaioni b,c, A. Manazza a,c, M. Manghisoni b,c, L. Ratti a,c V. Re b,c, E. Quartieri a,c, G. Traversi b,c a Università degli Studi di Pavia.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
Gossip : Gaseous Pixels Els Koffeman (Nikhef/UvA) (Harry van der Graaf, Jan Timmermans, Jan Visschers, Maximilien Chefdeville, Vladimir Gromov, Ruud Kluit,
P. Name Nikhef Amsterdam Electronics- Technology Vladimir Gromov, NIKHEF, Amsterdam. GOSSIPO-3 Meeting March 31, More on the Preamplifier.
GOSSIPO-3: Measurements on the Prototype of a Read- Out Pixel Chip for Micro- Pattern Gas Detectors André Kruth 1, Christoph Brezina 1, Sinan Celik 2,
R. Kluit Nikhef Amsterdam R. Kluit Nikhef Amsterdam Gossipo3 3 rd Prototype of a front-end chip for 3D MPGD 1/27/20091GOSSIPO3 prototype.
M. Manghisoni, L. Ratti Università degli Studi di Pavia INFN Pavia
HEC I chip design Short summary (J.Bán).
A General Purpose Charge Readout Chip for TPC Applications
Charge sensitive amplifier
Presentation transcript:

1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam, The Netherlands. September 28, 2006.

2 Outline  GOSSIP detector: principles of operation and features.  Inputs and requirements for the design of the input circuit.  The prototype of the input circuit.  Conclusions and plans.

3 GOSSIP detector: principles of operation. Cluster3 Cathode (drift) plane Integrated Grid (InGrid) Cluster2 Cluster1 Slimmed Silicon Readout chip Input pixel 1 mm, 400 V 50 μm, 400 V 50 μm - projection of the track. - 3D reconstruction of the track.. X Y Z Gas On Slimmed Silicon Pixel (GOSSIP) is a vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array.

4 Silicon sensor. Thickness is 250 μm. Chip pixel unit cell with bump bonding. Hybrid pixel detector. Readout chip. Slimmed (polished) readout chip. Thickness is 50 μm. Integrated grid (InGrid) Thickness is 1 um. Cathode foil. Thickness is 1 μm. Chip pixel unit cell. GOSSIP detector. PRO -can operate up to fluences of cm -2 -low material budget -negligible detector leakage current -low detector parasitic capacitance GOSSIP detector: main features. CONTRA - spark protection

5 Inputs and requirements for the design of the input circuit. Gain = Single electron efficiency. - the low-threshold operation (THR < 400 e) is required. Threshold, electrons Gain = 4000 Gain = 8000 Shape of the detector current. - motion of ions mainly determines the detector current. i(t) electron component ion component ns

6 Single electron drift time measurements (simulations) - time resolution σ time walk = 2 ns (100 μm). Gain = 2000 Gain = 4000 Gain = 8000 Entries 0 2ns 4ns 6ns 8ns 10ns 12ns 14ns Measured drift time Power consumption. Analog: 2 μW / pixel. Total: 100 mW / cm 2 or 200 mW / chip. low power dissipation reduction of the material budget. Inputs and requirements for the design of the readout circuit.

7 Pixel pitch and the chip size. 55 μm 256 pixels · 55 μm =1.4 cm - pixel pitch 55 μm x 55 μm. - sensitive area a matrix of 256 x 256 pixels ( 1.98 cm 2 ). Readout chip Analog-digital crosstalk. -the high sensitive analog circuit must be effectively isolated from the high speed switching lines. Inputs and requirements for the design of the readout circuit.

8 The prototype of the input circuit. Parasitic capacitance at the input of the front-end circuit. InGrid Input pad Substrate C p-grid C p-sub C p-p C det = C par = C p-grid + C p-p + C p-sub, where C p-sub is pad-to-substrate capacitance C p-grid is pad-to-InGrid capacitance C p-p is pad-to-pad capacitance Power Consumption Noise Speed C det

9 Evaluation of the input parasitic capacitances in 0.13 μm CMOS technology. Pad-to-pad capacitance (Cp-p) C p-p,fF pad-to-pad distance, μm Pad-to-InGrid capacitance (Cp-grid) C p-InGrid,fF size of the pad, μm Pad-to-substrate capacitance (Cp-sub) size of the pad, μm C p-sub, fF input parasitic capacitance ≈ 10 fF. The prototype of the input circuit.

10 Gain in the charge-sensitive preamplifier with a very low parasitic capacitance at the input (C par → 10 fF). C fb R fb C par I in (t) Q in Output Open loop voltage gain of the OPAMP C fb >> C fb = 1fF ??? - Stability ? - Physical layout ? Input pad Substrate C fb =1 fF C par = 10 fF…50 fF Coaxial-like layout of the input interconnection. Parasitic metal-to-metal fringe capacitance. Ground plane Charge-to-voltage gain ≈ 1 C fb Output The prototype of the input circuit. A M1 M2 M3 M6 LM C par A Ground ≈130 ≈ 10 fF

11 C fb 2I p Output Silicon sensor C int IpIp I leak + I p I leak > 1 μA C fb =1 fF Output Input Stability of the charge-sensitive preamplifier with a very low parasitic capacitance at the input (C par → 10 fF). C par - The scheme of F.Krummenacher - This circuit becomes unstable when C par → 10 fF - This circuit demonstrates a safe phase margin even when C par → 10 fF no need for the leakage current compensation The prototype of the input circuit. I const

12 DC feedback in the charge-sensitive preamplifier. Output - allows for discharging of the feedback capacitor. R fb = 1/gm M1 + 1/gm M2 = 80 MΩ - biases the input of the circuit. Statistical spread of the offset at the output σ(δUout DC ) = 20 mV (170 e - ). Input I b =1 nA C fb =1 fF V b2 V b1 Vdd=1.2 V Output Input M2 M1 M3M4 M5 M6 M7 M8 M9 The prototype of the input circuit. Virtual resistor R fb = 80 MΩ

13 Output Input The operational amplifier. OPAMP Output I b2 =0.2 μA V b3 V b2 I b1 =1 μA M2 M1 M4M3 M6M5 M7 Vdd=1.2V Input Transfer function U out / U in = A(jω)= Ao/(1+jω τ ) = 130/(1+jω●14 ns) Bias current I b1 +I b2 =1 μA μA =1.2 μA Power dissipation P=1.2 V ● 1.2 μA = 1.5 μW The prototype of the input circuit.

14 Pulse response and noise. Decay of the signal is δ-pulse response of the preamplifier Amplitude = exp t R fb ● C fb C par I in (t) Q in Output A(jω)=Ao/(1+j ● ω ● τo) C fb = 1fF R fb = 80 MΩ I b1 =1 μA 1 1+ Q in C fb ● C par + C fb Ao ● C fb Peaking time = 3 ● τo 1+ C par + C fb Ao ● C fb ≈ 5 ns … 30 ns  Cpar -response peaking time is 5 ns…30 ns. ENC ≈ e - (RMS) even with low bias current (I b1 =1 μA) and fast peaking time. The prototype of the input circuit Time, ns U, mV

15 Physical layout aspect. Floating P-well for analog NFETs. Guard rings GND GND_ana VDD_ana P-type substrate P-well N-well Analog P-type FET area Analog N-type FET area Digital N-type FET area substrate current GOSSIPO chip, submitted on December 12, Triple well layout let us better isolate digital and analog parts of the chip. The prototype of the input circuit.

16 Voltage follower C fb ≈ 1fF R fb ≈ 80 MΩ C par ≈ 30 fF Charge sensitive preamplifier C t ≈ 3.3 fF Input 1 CMOS Comparator C fb ≈ 1 fF R fb ≈ 80 MΩ C par ≈ 30 fF Charge sensitive preamplifier C t ≈ 3.3 fF Input 2 CMOS Counter Clock Outputs Principal Block Diagram of the prototype. Objectives for the first submit. 1)Operation of the proposed front-end circuit -stability of the preamplifier -pulse response -noise -channel-to-channel spread. 2) Cross-talk between the high sensitive analog circuit and high speed switching CMOS blocks. Stop Start The prototype of the input circuit.

17 Measurements. δ-pulse response of the preamplifier. Qin = 1000 e - - The preamplifier with (C par = 35 fF and C fb = 1 fF) demonstrates a stable operation and an expected pulse response and noise. ENC = 60 e - (RMS). The prototype of the input circuit. δ-pulse response of the preamplifier. Qin = 410 e -

18 Measurements. δ-pulse response at the output of the CMOS comparator. Qin = 410 e -. Threshold = 300 e -. -The channel-to-channel spread of the threshold is σ THR ≈ 160 e - ( consistent with simulations). The prototype of the input circuit.

19 Measurements. - no significant crosstalk between the high sensitive input and the 100 MHz clock line. The prototype of the input circuit. The output of the comparator. Threshold = 300 e - Clock signal is running at 100 MHz.

20 Conclusions and plans. Front-end readout circuit of the GOSSIP chip will benefit from the low detector parasitic capacitance and no need to compensate for the leakage current. -The first prototype of the fast (40 ns peaking time), low-noise (ENC = 60 e - (RMS) and low-power (2 μw per channel) input circuit for the GOSSIP chip has been successfully implemented in 0.13 μm CMOS technology. - Owing to the triple well layout used in the prototype, the high sensitive analog inputs have been effectively isolated from the high speed switching gates. -A new prototype featuring TDC-per-pixel concept will be submitted in the end of 2006.

21 Additional slide. Protection against discharges. Metal layer LM Metal layer TD Polymide Oxide High Resistive Amorphous Silicon 20um 3um Layout of the input pad R fb C p-sub ≈ 10fF Q discharge Output A C p-grid ≈ 0.5fF R prot ≈ 1MΩ - protective resistor causes neither signal distortion nor noise increase as long as R prot ●C p-grid is less than 1ns.

22 Additional slide. Integrated Grids.