Relativistic Coulomb Excitation of Neutron-Rich 54,56,58 Cr Herbert Hübel Helmholtz-Institut für Strahlen- und Kernphysik Universität Bonn Germany.

Slides:



Advertisements
Similar presentations
Investigation of short-lived nuclei using RIBs
Advertisements

LoI Relativistic Coulomb M1 excitation of neutron-rich 85 Br N. Pietralla G. Rainovski J. Gerl D. Jenkins.
Advanced GAmma Tracking Array
Coulomb excitation of the band-terminating 12 + yrast trap in 52 Fe IFIC, CSIC – University of Valencia, Spain University and INFN-Sezione di Padova, Italy.
GEANT4 Simulations of TIGRESS
1. Isospin Symmetry and Coulomb Effects Towards the Proton Drip-Line RISING Experiment performed October 2003 Keele, GSI, Brighton, Lund, Daresbury, Surrey,
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
ROGER CABALLERO FOLCH, Barcelona, 9 th November 2011.
First spectroscopy of 64 Cr and the collectivity of neutron-rich nuclei at N~40 CEA Saclay: A. Obertelli, F. Flavigny, A. Gillibert, A. Goergen, W. Korten,
Congresso del Dipartimento di Fisica Highlights in Physics –14 October 2005, Dipartimento di Fisica, Università di Milano Study of exotic nuclei.
Relativistic Coulomb excitation of nuclei near 100 Sn C.Fahlander, J. Eckman, M. Mineva, D. Rudolph, Dept. Phys., Lund University, Sweden M.G., A.Banu,
Rare ISotope INvestigation at GSI Status of the relativistic beam campaign Introduction Fast beam physics program Experimental methods Status and perspectives.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Production and Decay of Sub-U Isotopes by the Projectile Fragmentation of 1 A·GeV 238 U Experiment March, 2003 Zhong Liu University of Edinburgh.
RISING Project Adam Maj Adam Maj (IFJ PAN Kraków) NEEN meeting in Krakow September 14/ Rare Isotopes Investigation at GSI.
Proton and Two-Proton Decay of a High-Spin Isomer in 94 Ag Ernst ROECKL GSI Darmstadt and Warsaw University.
Spin alignment and g-factor measurements with RISING Maria Kmiecik IFJ PAN NZ22 IFJ PAN Review 5-6 Feb IFJ PAN Review 5-6 Feb
Workshop on Physics on Nuclei at Extremes, Tokyo Institute of Technology, Institute for Nuclear Research and Nuclear Energy Bulgarian Academy.
GRETINA experiments with fast beams at NSCL Dirk Weisshaar,  GRETINA and fast-beam experiments  Some details on implementation at NSCL  Performance.
Xy position from LYCCA Slowed down beams - new perspective for GOSIA scattering experiments at relativistic energies.
Wednesday, May 9 th 2007Torsten Beck Fast Pulse Shape Analysis for AGATA-Germanium- Detectors Torsten BeckWednesday, 9. Mai 2007 Student seminar Wednesday,
Isospin impurity of the Isobaric Analogue State of super-allowed beta decay experimental technique isospin impurity determination Bertram Blank, CEN Bordeaux-Gradignan.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Development of slowed down beams at GSI P.Boutachkov GSI Physics objectives Proposed solution Test experiments Future Test setup for slowed down beams.
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Primary beam production target ESR The GSI Radioactive Beam Facilities RISING high-resolution Ge  -spectrometer.
From CATE to LYCCA Mike Taylor Particle Identification After the Secondary Target.
G-factor measurement at RISING: The case of 127 Sn Liliya Atanasova University of Sofia.
Nuclear Structure studies using fast radioactive beams J. Gerl SNP2008 July Ohio University, Athens Ohio USA –The RISING experiment –Relativistic.
abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1 ]  70% transmission SIS – FRS  ε trans transmission.
Pygmy Dipole Resonance in 64Fe
Preliminary results from the measurement of nuclear isomers and masses in the neutron-rich 160
Rare ISotope INvestigation at GSI experimental set-up sub-shell closure (N=32 gap) for Cr nuclei pairing interaction in semi-magic Sn nuclei shapes and.
The Final State Interaction in the pp  + (np) and pp  + (Λp) Reactions R. Siudak Institut für Strahlen- und Kernphysik der Universität Bonn, Bonn,
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
PRESORT OF THE DATA OF THE COLOGNE TEST EXPERIMENT ● Quality and integrity of data ● Detector numbering and positions ● Calibrations and gain stability.
Progress in  half lives of nuclei approaching the r-process path at N=126 José Benlliure Universidad de Santiago de Compostela, Spain INPC 2007.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
Rare Isotope Spectroscopic INvestigation at GSI. abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1.
Production and beta decay lifetimes of heavy neutron-rich nuclei approaching the r-process path Teresa Kurtukian-Nieto Universidad de Santiago de Compostela.
RESULTS: Singles Gamma Spectra  Five gamma energy transitions were  observed with energies739 keV, 822 keV, 712 keV 849 keV and 111 keV γ –γ Coincidence.
FAIR (Facility for Antiproton and Ion Research) (Darmstadt, Germany) low-energy cave MeV/u fragmentation/fission ~1GeV/u fragment separator 350m.
Tracking Background GRETINA Software Working Group Meeting September 21-22, 2012, NSCL MSU I-Yang Lee Lawrence Berkeley National Laboratory.
Momentum distributions of projectile residues: a new tool to investigate fundamental properties of nuclear matter M.V. Ricciardi, L. Audouin, J. Benlliure,
Observation of new neutron-deficient multinucleon transfer reactions
Adam Maj IFJ PAN Krakow Search for Pigmy Dipole Resonance in 68 Ni RISING experiment in GSI EWON Meeting Prague, May, 2007.
Exotic neutron-rich nuclei
Coulomb-excitation of the exotic nuclei 94 Kr and 96 Kr M. Albers 1, N. Warr 1, D. Mücher 1, A. Blazhev 1, J. Jolie 1, B. Bastin 2, C. Bernards 1, J. Butterworth.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Physics at the extremes with large gamma-ray arrays Lecture 3 Robert V. F. Janssens The 14 th CNS International Summer School CNSSS15 Tokyo, August 26.
Study of repulsive nature of optical potential for high energy 12 C+ 12 C elastic scattering (Effect of the tensor and three-body interactions) Gaolong.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
June 3rd, 2013 | Norbert Pietralla | TU-Darmstadt | Konferenz | 1 On the Road to FAIR: First Operation of AGATA in PreSPEC at GSI Norbert Pietralla, TU-Darmstadt,
Georgi Georgiev CSNSM, Orsay, France Nuclear structure studies at the r-process path Coulomb excitation of odd-A neutron-rich Rb isotopes at REX-ISOLDE.
Joint LIA COLL-AGAIN, COPIGAL, POLITA WORKSHOP
IUAC H.J. Wollersheim, P. Doornenbal, J. Gerl
Event Reconstruction and Data Analysis in R3BRoot Framework
Maria Kmiecik, Giovanna Benzoni, Daisuke Suzuki
Isospin Symmetry test on the semimagic 44Cr
Feeding of low-energy structures with different deformations by the GDR decay: the nuBall array coupled to PARIS M. Kmiecik, A. Maj, B. Fornal, P. Bednarczyk.
H.J. Wollersheim, P. Doornenbal, J. Gerl
Study of the resonance states in 27P by using
Rare Isotope Spectroscopic INvestigation at GSI
Coulomb Excitation of 114, 116Sn
Rare Isotope Spectroscopic INvestigation at GSI
Daniela Henzlova GSI-Darmstadt, Germany
108Sn studied with intermediate-energy Coulomb excitation
Rare Isotope Spectroscopic INvestigation at GSI
Presentation transcript:

Relativistic Coulomb Excitation of Neutron-Rich 54,56,58 Cr Herbert Hübel Helmholtz-Institut für Strahlen- und Kernphysik Universität Bonn Germany

Participants A. Bürger, H. Hübel, A. Al-Khatib, P. Bringel, A. Neußer, A.K. Singh, D. Mehta, T.S. Reddy University of Bonn, Germany T. Saito, A. Banu, T. Beck, F. Becker, P. Bednarczyk, H. Geissel, J. Gerl, M. Gorska, H. Grawe, J. Grebosz, M. Hellström, M. Kavatsyuk, O. Kavatsyuk, Kojouharov, N. Kurz, R. Lozeva, S. Mandal, N. Saito, H. Schaffner, H. Weick, M. Winkler, H.J. Wollersheim GSI Darmstadt, Germany G. Benzoni, A. Bracco, F. Camera, B. Million, O. Wieland University of Milano, Italy E. Clement, A. GörgenG. Hammond CEA Saclay, FranceKeele University, UK P. Reiter, P. DoornenbalM. Kmiecik, A. Maj, W. Meczynski University of Köln, GermanyUniversity of Krakow, Poland S. MuralitharZ. Podolyak NSC New Delhi, IndiaUniversity of Surrey, UK C. Wheldon HMI Berlin, Germany

Physics Motivation Shell structure of nuclei far off stability may differ from that of nuclei near the valley of stability Shell structure is also important for astrophysics applications, e.g. for nuclear synthesis r-process abundance calculations Shell structure is related to the monopole part of the NN interaction e.g. S = 0 (spin flip),  l = 0 (spin-orbit partners), T = 0 (proton-neutron interaction): strongly binding in the two-body interaction Causes large monopole shifts at large neutron or proton excess due to missing interaction partners Effect on spin-orbit splitting T. Otsuka et al., Eur. Phys. J. A 13, 69 (2002) E. Caurier et al., Eur. Phys. J. A 15, 145 (2002) M. Honma et al., Phys. Rev. C 69, (2004) H. Grawe, Springer Lecture Notes Phys. 651, 33 (2004)

Neutron-rich nuclei with N = 28 to 40: p 1/2 f 5/2 p 3/2 f 7/2 T = 1 (2p 1/2 ) 2 monopole strongly binding in some interactions Modification of the spin-orbit splitting M. Honma et al., Phys. Rev. C 69, (2004) E. Caurier et al., Eur. Phys. J. A 15, 145 (2002) g 9/ Position of p 1/2 uncertain Prediction subshell at N = 32,34 Differences between effective potentials Experimental data are needed to test the potentials used in calculations

Neutron-rich region around Z = 24, N = 32

In the Ca isotopes E(2 + ) increases at N = 32, but not in the Ni isotopes Ti and Cr isotopes also show the increase in E(2 + ), B(E2) for 54 Ti 32 low Experimental quantities sensitive to shell closure: Separation energies 2 + energies and B(E2) values

Experiments with FRS-RISING setup at GSI FRS = FRagment Separator RISING = Rare ISotope INvestigation at GSI GSI = Gesellschaft für SchwerIonenforschung Darmstadt, Germany

Layout of the FRS-RISING setup at GSI Radioactive beams produced by fragmentation and separated by FRS Primary beam: 86 Kr 480 MeV/A Production target: 8 Be 2.5 g/cm 2 Reaction target: Au 1.0 g/cm 2 54,56,58 Cr ions: 100 MeV/A SCI1 and SCI2 give TOF: v/c, MW1,2: multiwire detectors MUSIC ionization chamber gives energy loss: Z HECTOR: BaF 2 scintillation detectors, not used here 15 Ge-Cluster detectors, 7 encapsulated Ge crystals each CATE: Si-CsJ CAlorimeter TElescope for  E, E

RISING  -ray detectors around the Au reaction target

Ge-Cluster detectors Seven encapsulated Ge crystals in common vacuum Efficiency ~60 % each, hexagonal tapered

Ge Cluster detectors 15 Clusters arranged in two rings at 15 0 and 36 0 Absolute efficiency determined with 60 Co source: 1.15% at MeV, with Lorentz boost 2.31% Energy dependence determined with 152 Eu source Good timing of BaF 2 detectors of HECTOR array used to identify and suppress background

Multiwire detectors MW1 and MW2 used for incoming beam tracking: Extrapolation to interaction point on the target Together with CATE ➔ determine scattering angle and angle of  emission 20 x 20 cm 2, Resolution: 1mm ⇒ target tracking: popo MW1 MW2 CATEAu target γ pipi θsθs θγθγ Multiwire extrapolation to target

Fragment Identification Fragment identification before Au target Z: 0.8% 56 Cr Z A/Q A/Q:1.1% (with Z gate)

CAlorimeter TElescope CATE ∆E 0.3 mm thick Si detectors Z identification Position sensitive E CsI detectors Mass identification 56 Cr (Coulomb excitation) 56 Cr Au ∆E∆E E Ion identification after the target

CATE events

Event-by-event Doppler correction of  -ray energies Determine v/c from TOF Tracking of incoming and outgoing Cr ions and angle of Ge crystal with respect to ion gives actual  -ray emission angle tracking: popo MW1 MW2 CATEAu target γ pipi θsθs θγθγ  -Ray Energy (keV) 30 keV 16 keV 834 Counts

Scattering angle of Cr ions Selection of Coulomb-excitation events Scattering angle (deg) 200 C o u n t s 0 Limit in scattering angles 0.6 o to 2.8 o corresponds to impact parameters of 40 to 10 fm, respectively

Details of the three experiments 54 Cr: ~4 x 10 3 particles/s, 22 h, 45% 54 Cr 56 Cr: ~1 x 10 3 particles/s, 20 h, 35% 56 Cr 58 Cr: ~3 x 10 2 particles/s, 55 h, 25% 58 Cr Trigger condition: SCI2 and one CATE CsI Time gate on prompt peak, Doppler-shift correction, gate on scattering angle, gate on incoming and outgoing Cr ions

Gamma-ray spectra of 54,56,58 Cr 1006 keV 58 Cr 880 keV 54 Cr 835 keV 56 Cr

Comparison to theory Calculations: T. Otsuka et al., Phys. Rev. Lett. 87, (2001) T. Otsuka et al., Eur. Phys. J. A 13,69 (2002) M. Honma et al., Phys. Rev. C 69, (2004) E. Caurier et al., Eur. Phys. J. A 15, 145 (2002) Experimental B(E2) value lower for 56 Cr 32 than for 54 Cr and 58 Cr Experimental 2 + energy high for 56 Cr 32 Theory does not reproduce the 56 Cr B(E2) value Similar results for 52,54,56 Ti (MSU) D.-C. Dinca et al., preprint PRELIMINARY

Summary 54,56,58 Cr ions produced by spallation of high-energy 86 Kr on Be and separated by FRS 54,56,58 Cr Coulomb excited on Au target at 100 MeV/A B(E2, ) determined E(2 + ) higher and B(E2) smaller for 56 Cr 32 than for neighbors (preliminary) Evidence for subshell closure at N = 32 Discrepancy to large-scale shell model calculations