会社名など E. Bauer et al, Phys. Rev. Lett. 92. 027003 (2004) M. Yogi et al. Phys. Rev. Lett. 93, 027003 (2004) Kitaoka Laboratory Takuya Fujii Unconventional.

Slides:



Advertisements
Similar presentations
Inhomogeneous Superconductivity in the Heavy Fermion CeRhIn 5 Tuson Park Department of Physics, Sungkyunkwan University, Suwon , South Korea IOP.
Advertisements

Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Unveiling the quantum critical point of an Ising chain Shiyan Li Fudan University Workshop on “Heavy Fermions and Quantum Phase Transitions” November 2012,
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
Recap: U(1) slave-boson formulation of t-J model and mean field theory Mean field phase diagram LabelStateχΔb IFermi liquid≠ 0= 0≠ 0 IISpin gap≠ 0 = 0.
Topological Superconductors
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Wendy Xu 286G 5/28/10.  Electrical resistivity goes to zero  Meissner effect: magnetic field is excluded from superconductor below critical temperature.
Prelude: Quantum phase transitions in correlated metals SC NFL.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Quantum Criticality. Condensed Matter Physics (Lee) Complexity causes new physics Range for CMP.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
Impurity Phases, Stoichiometry, Second Anomaly, and Broad Superconducting Transition in Noncentrosymmetric CePt 3 Si Ismardo Bonalde Low Temperature Laboratory.
Free electrons – or simple metals Isolated atom – or good insulator From Isolation to Interaction Rock Salt Sodium Electron (“Bloch”) waves Localised electrons.
The Three Hallmarks of Superconductivity
Eric Bauer Los Alamos National Laboratory Collaborators: J. Sarrao, J. Thompson, L. Morales, N. Curro, T. Caldwell, T. Durakiewicz, J. Joyce, A. Balatsky,
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
Superconductivity Characterized by- critical temperature T c - sudden loss of electrical resistance - expulsion of magnetic fields (Meissner Effect) Type.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
Transport of heat and charge at a z=2 Quantum Critical Point: Violation of Wiedemann-Franz Law and other non-fermi-liquid properties. A.Vishwanath UC Berkeley.
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Magnetic transition in the Kondo lattice system CeRhSn2
Lecture schedule October 3 – 7, 2011  #1 Kondo effect  #2 Spin glasses  #3 Giant magnetoresistance  #4 Magnetoelectrics and multiferroics  #5 High.
Huiqiu Yuan Department of Physics, Zhejiang University, CHINA Field-induced Fermi surface reconstruction near the magnetic quantum critical point in CeRhIn.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Kazuki Kasano Shimizu Group Wed M1 Colloquium Study of Magnetic Ordering in YbPd Reference R.Pott et al, Phys.Rev.Lett.54, (1985) 1/13.
Y. Tanaka Nagoya University, Japan Y. Asano Hokkaido University, Japan Y. Tanuma Akita University, Japan Alexander Golubov Twente University, The Netherlands.
Magnetization divided by magnetic field vs. temperature T for SmFe 2 Zn 20, SmCo 2 Zn 20, SmRu 2 Zn 20, SmNi 2 Cd 20, and SmPd 2 Cd 20. Inset: low temperature.
@Nagoya U. Sept. 5, 2009 Naoto Nagaosa Department of Applied Physics
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Calorimetric Investigation under High Pressure Shimizu-Group M1 Shigeki TANAKA F. Bouquet et al., Solid State Communications 113 (2000)
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
Charge Kondo Effect and Superconductivity in Tl-Doped PbTe Y. Matsushita,et.al. PRL 94, (2005) T. A. Costi and V. Zlatic PRL 108, (2012)
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
An Introduction to Fe-based superconductors
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
Superfluid 3He in aerogel I.A. Fomin, P.L. Kapitza Institute for Physical Problems, Moscow. XV INTERNATIONAL SUMMER SCHOOL NICOLÁS CABRERA 100 YEARS LIQUID.
Unconventional superconductivity Author: Jure Kokalj Mentor: prof. dr. Peter Prelovšek.
History of superconductivity
1 Unconventional Magnetism: Electron Liquid Crystal State and Dynamic Generation of Spin-orbit Coupling Congjun Wu C. Wu and S. C. Zhang, PRL 93,
The cerium based ‘115’ materials, CeMIn 5 (M = Co, Rh, Ir), are highly unconventional metals that can display superconductivity, magnetism, or, as we found,
Superconducting properties in filled-skutterudite PrOs4Sb12
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
Magnetism on the verge of breakdown H. Aourag Laboratory for Study and Prediction of Materials URMER; University of Tlemcen  What is magnetism?  Examples.
Correlated Electron State in Ce 1-x Yb x CoIn 5 Stabilized by Cooperative Valence Fluctuations Brian M. Maple, University of California, San Diego, DMR.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Kondo Physics, Heavy Fermion Materials and Kondo Insulators
Strontium Ruthenate Rachel Wooten Solid State II Elbio Dagotto
From Local Moment to Mixed-Valence Regime in Ce 1−x Yb x CoIn 5 alloys Carmen Almasan, Kent State University, DMR Ce 1−x Yb x CoIn 5 alloys have.
Optical lattice emulator Strongly correlated systems: from electronic materials to ultracold atoms.
Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds : 59 Co NMR Study in PuCoGa 5 Kazuhiro Nishimoto Kitaoka lab. S.-H.
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Lecture schedule October 3 – 7, 2011
Superconductivity and magnetism in iron-based superconductor
The quest to discover the self-organizing principles that govern collective behavior in matter is a new frontier, A New Frontier ELEMENTS BINARYTERTIARY.
ARPES studies of unconventional
Rotating FFLO Superfluid in cold atom gases Niigata University, Youichi Yanase Tomohiro Yoshida 2012 Feb 13, GCOE シンポジウム「階層の連結」, Kyoto University.
6/7/2016 Iron Superconductivity !! o Superconducting Gap in FeAs from PCAR o “Minimal” Model of FeAs planes – Different from CuO 2 !! o Multiband Magnetism.
FFLO and pair density wave superconductors 1- General motivation for studying PDW phases 2- Microscopic PDW mechanism in superconductors without parity.
Single crystal growth of Heisenberg spin ladder and spin chain Single crystal growth of Heisenberg spin ladder and spin chain Bingying Pan, Weinan Dong,
Magnetism on the verge of breakdown
Review on quantum criticality in metals and beyond
How might a Fermi surface die?
Presentation transcript:

会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional superconductivity in Noncentrosymmetric Heavy- Fermion superconductors

2 Content Introduction Heavy Fermion & Fermi Liquid Symmetry of SC state Inversion symmetry Experimental Data in CePt 3 Si Summary

3 Heavy Fermion & Fermi Liquid conduction electron 4f-electrons localize at atom. Magnetic orderFermi liquid state by heavy electrons Kondo effect conduction electron rare earth ion RKKY interaction 4f-electrons are itinerant. Introduction

4 Phase diagram of heavy fermion systems Unconventional SC around QCP mediated by magnetic fluctuations. Temperature (K) 0 Pressure QCP Magnetic order Non Fermi liquid Fermi Liquid Introduction

5 Pair function orbital spin Spin partOrbital part Singlet (S=0) antisymmetricsymmetric (s,d..) Triplet (S=1) symmetricantisymmetric (p,f..) Introduction BCS-SCHigh-T C cuprate Ce based HF-SC UPt 3,Sr 2 RuO 4

6 Centrosymmetric vs Noncentrosymmetric H-F SC Pt(1) Pt(2) CePt 3 Si CeRhSi 3 CentrosymmetricNoncentrosymmetric Cooper pair materials(ex)CeCu 2 Si 2 CePt 3 Si, UIr, CeRhSi 3 CeCu 2 Si 2 Si Cu Ce Introduction ±

7 Noncentrosymmetric CePt 3 Si the first heavy fermion SC without a center of symmetry 1)SC ; cooper pairs formed by heavy quasiparticles (T C =0.75K) 2)AFM ; coexistence with SC on a microscopic scale (T N =2.2K) 3)High H c2 (0) 4)Anomalous behavior in 1/T 1 of NMR Pt(1) Pt(2) Novel SC state caused by lack of inversion symmetry ? key experimental features

8 Resistivity & susceptibility T N =2.2K T C =0.75 K T.Yasuda et al., J.Phys Soc.Jpn.73, 1657 (2004) Coexistence of SC & AFM

9 Specific heat Cp T C =0.75 K T N =2.2K C p /T=γ=390 [mJ/molK 2 ] ∝ m * λ- like anomaly at 2.2 K : onset of long range magnetic order jump around 0.75K: the transition into a SC phase C/T =γ+AT 2 Coexistence of SC & AFM

10 Microscopic evidence of AFM & SC N.Metoki,J.Phys.: Cond. Mat 16 L207 (2004) Ce Coexistence of SC & AFM on a microscopic scale Pt(2)

11 H(T)-T(K) phase diagram H c2 (0)  5T > > H p  1T H p =1.84 * T C H P : Pauli-Clogston limiting field H=0H≠0H≠0 Spin-Singlet H=H P High Hc2(0) SC P-C Limit

Pt nuclear spin-relaxation rate 1/T 1 LaPt 3 Si (La-NQR) s-wave CePt 3 Si (~1T) BW (full gap) p-wave LaPt 3 Si ; BCS s-wave model is applicable. CePt 3 Si ; Small jump at T c. However, overall T dependence is different from p-wave & BCS s-wave. Unusual T dependence of 1/T 1 T ⇒ s+p-wave pairing SC ?

13 Noncentrosymmetric heavy fermion Ce-compounds T (K) 0 Pressure AFM SC CePt 3 Si CeRhSi 3 Pt(1) Pt(2) CePt 3 Si CeRhSi 3 : Pressured-induced SC

14 Noncentrosymmetric heavy fermion Ce-compounds CePt 3 SiCeIrSi 3 CeRhSi 3 T N (K) (P=0) T C (K) (2.5GPa) 0.85 (1.62GPa) H C2 (T)511.1 (2.5GPa) 7 (1.62GPa) γ(mJ/molK 2 ) (P=0) Novel SC states caused by lack of inversion symmetry & high H C2 (0) !? High Hc2(0) Fe 26 Co 27 Ni 28 Ru 44 Rh 45 Pd 46 Os 76 Ir 77 Pt 78

15 Summary The SC exists even in the AFM state in CePt 3 Si. Novel cooper pairing state with the two-component order parameter composed of spin-singlet and spin-triplet pairing components may be realized in CePt 3 Si. Noncentrosymmetric heavy fermion Ce-compounds may be thought of as unconventional SC from the aspect of high H C2 (0).