ROSA – ROSSA Validation results R. Notarpietro, G. Perona, M. Cucca

Slides:



Advertisements
Similar presentations
Modelling complexity in the upper atmosphere using GPS data Chris Budd, Cathryn Mitchell, Paul Spencer Bath Institute for Complex Systems, University of.
Advertisements

9-10 November 2011 Atmospheric Waves Workshop, ESTEC Atmospheric Waves Workshop Scott Osprey 1, Corwin Wright 2 Evidence of atmospheric gravity waves and.
Page 1© Crown copyright 2005 Numerical space weather prediction: can meteorologists forecast the way ahead? Dr Mike Keil, Dr Richard Swinbank and Dr Andrew.
ECMWF CO 2 Data Assimilation at ECMWF Richard Engelen European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Many thanks to Phil Watts,
Radio Occultation Atmospheric Profiling with Global Navigation Satellite Systems (GNSS)
0 The FORMOSAT3/COSMIC Mission Space Weather Application AMS San Diego Jan. 11, 2005 Christian Rocken
GPS / RO for atmospheric studies Dept. of Physics and Astronomy GPS / RO for atmospheric studies Panagiotis Vergados Dept. of Physics and Astronomy.
COSMIC / FormoSat 3 Overview, Status, First results, Data distribution.
GCOS Meeting Seattle, May 06 Using GPS for Climate Monitoring Christian Rocken UCAR/COSMIC Program Office.
Radio Occultation From GPS/MET to COSMIC.
GPS radio occultation Sean Healy DA lecture, 28th April, 2008.
New Satellite Capabilities and Existing Opportunities Bill Kuo 1 and Chris Velden 2 1 National Center for Atmospheric Research 2 University of Wisconsin.
Use of GPS RO in Operations at NCEP
Experiments with the microwave emissivity model concerning the brightness temperature observation error & SSM/I evaluation Henning Wilker, MIUB Matthias.
Sandro M. Radicella Head, Aeronomy and radiopropagation Laboratory Ionospheric Research at the Abdus Salam ICTP Aeronomy and Radiopropagation Laboratory.
An Introduction to ROSA-ROSSA structure G. Perona
Using GPS data to study the tropical tropopause Bill Randel National Center for Atmospheric Research Boulder, Colorado “You can observe a lot by just watching”
CGMS-40, November 2012, Lugano, Switzerland Coordination Group for Meteorological Satellites - CGMS IROWG - Overview of and Plans for the Newest CGMS Working.
Simulation Studies on the Analysis of Radio Occultation Data Andrea K. Steiner, Ulrich Foelsche, Andreas Gobiet, and Gottfried Kirchengast Institute for.
Different options for the assimilation of GPS Radio Occultation data within GSI Lidia Cucurull NOAA/NWS/NCEP/EMC GSI workshop, Boulder CO, 28 June 2011.
GPS Radio Occultation Sounding Zhen Zeng (HAO&COSMIC)
June, 2003EUMETSAT GRAS SAF 2nd User Workshop. 2 The EPS/METOP Satellite.
3DVAR Retrieval of 3D Moisture Field from Slant- path Water Vapor Observations of a High-resolution Hypothetical GPS Network Haixia Liu and Ming Xue Center.
Slide 1 Impact of GPS-Based Water Vapor Fields on Mesoscale Model Forecasts (5th Symposium on Integrated Observing Systems, Albuquerque, NM) Jonathan L.
Status of the assimilation of GPS RO observations: the COSMIC Mission L. Cucurull JCSDA/UCAR J.C. Derber, R. Treadon, and R.J. Purser.
COSMIC GPS Radio Occultation Temperature Profiles in Clouds L. LIN AND X. ZOU The Florida State University, Tallahassee, Florida R. ANTHES University Corporation.
Linear and nonlinear representations of wave fields and their application to processing of radio occultations M. E. Gorbunov, A. V. Shmakov Obukhov Institute.
Joint International GRACE Science Team Meeting and DFG SPP 1257 Symposium, Oct. 2007, GFZ Potsdam Folie 1 Retrieval of electron density profiles.
Recent developments for a forward operator for GPS RO Lidia Cucurull NOAA GPS RO Program Scientist NOAA/NWS/NCEP/EMC NCU, Taiwan, 16 August
11 GRAS SAF Climate Products Hans Gleisner & Kent B. Lauritsen Danish Meteorological Institute Contents -GRAS SAF offline profiles and climate gridded.
Climate Monitoring with Radio Occultation Data Systematic Error Sources C. Rocken, S. Sokolovskiy, B. Schreiner, D. Hunt, B. Ho, B. Kuo, U. Foelsche.
GRAS SAF AND RADIO OCCULTATION DATA K. B. Lauritsen 1, H. Gleisner 1, M. E. Gorbunov 2, F. Rubek 1, S. Syndergaard 1, H. Wilhelmsen 1 (1) Danish Meteorological.
Retrieval of Moisture from GPS Slant-path Water Vapor Observations using 3DVAR and its Impact on the Prediction of Convective Initiation and Precipitation.
Use of GPS Radio Occultation Data for Climate Monitoring Y.-H. Kuo, C. Rocken, and R. A. Anthes University Corporation for Atmospheric Research.
Application of COSMIC refractivity in Improving Tropical Analyses and Forecasts H. Liu, J. Anderson, B. Kuo, C. Snyder, and Y. Chen NCAR IMAGe/COSMIC/MMM.
Global E-region Densities Derived from Radio Occultation Measurements M. J. Nicolls 1, F. S Rodrigues 2, and G. S. Bust 2 1. SRI International, Menlo Park,
Key RO Advances Observation –Lower tropospheric penetration (open loop / demodulation) –Larger number of profiles (rising & setting) –Detailed precision.
2 nd GRAS-SAF USER WORKSHOP Assimilation of GPS radio occultation measurements at DAO (soon GMAO) P. Poli 1,2 and J. Joiner 3 Data Assimilation Office.
AGU Fall MeetingDec 11-15, 2006San Francisco, CA Estimates of the precision of GPS radio occultations from the FORMOSAT-3/COSMIC mission Bill Schreiner,
Improving the Assimilation of GPS RO Data in the Tropical Lower Troposphere Bill Kuo and Hui Liu UCAR COSMIC.
ECMWF reanalysis using GPS RO data Sean Healy Shinya Kobayashi, Saki Uppala, Mark Ringer and Mike Rennie.
Preliminary results from assimilation of GPS radio occultation data in WRF using an ensemble filter H. Liu, J. Anderson, B. Kuo, C. Snyder, A. Caya IMAGe.
Improved Radio Occultation Observations for a COSMIC Follow-on Mission C. Rocken, S. Sokolovskiy, B. Schreiner UCAR / COSMIC D. Ector NOAA.
Daily Operation and Validation of a Global Assimilative Ionosphere Model Brian Wilson, JPL George Hajj, JPL, USC Lukas Mandrake, JPL Xiaoqing Pi, JPL,
Workshop on the Future of Ionospheric Research for Satellite Navigation, Dec 4-15, 2006, ICTP, Trieste, Italy 1 Ionospheric Parameter Estimation Using.
Improving GPS RO Stratospheric Retrieval for Climate Benchmarking Chi O. Ao 1, Anthony J. Mannucci 1, E. Robert Kursinski 2 1 Jet Propulsion Laboratory,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
Formosat3/COSMIC Workshop, Taipei, Oct. 1-3, 2008 The Ionosphere as Signal and Noise in Radio Occultation Christian Rocken, Sergey Sokolovskiy, Bill Schreiner,
0 Earth Observation with COSMIC. 1 COSMIC at a Glance l Constellation Observing System for Meteorology Ionosphere and Climate (ROCSAT-3) l 6 Satellites.
Electron density profile retrieval from RO data Xin’an Yue, Bill Schreiner  Abel inversion error of Ne  Data Assimilation test.
Data Assimilation Retrieval of Electron Density Profiles from Radio Occultation Measurements Xin’an Yue, W. S. Schreiner, Jason Lin, C. Rocken, Y-H. Kuo.
0 7th ESWW, Bruges, Ionospheric Scintillations Propagation Model Y. Béniguel, J-P Adam IEEA, Courbevoie, France.
COSMIC Ionospheric measurements Jiuhou Lei NCAR ASP/HAO Research review, Boulder, March 8, 2007.
© Copyright QinetiQ limited 2006 On the application of meteorological data assimilation techniques to radio occultation measurements of.
GPS Radio-Occultation data (COSMIC mission) Lidia Cucurull NOAA Joint Center for Satellite Data Assimilation.
Assimilation experiments with CHAMP GPS radio occultation measurements By S. B. HEALY and J.-N. THÉPAUT European Centre for Medium-Range Weather Forecasts,
CGMS-43 EUM-WP-12 Presentation1 STATUS OF EUMETSAT STUDY ON RADIO OCCULTATION SATURATION WITH REALISTIC ORBITS.
Observational Error Estimation of FORMOSAT-3/COSMIC GPS Radio Occultation Data SHU-YA CHEN AND CHING-YUANG HUANG Department of Atmospheric Sciences, National.
Recent GNSS activities in Germany for COST
TIMN seminar GNSS Radio Occultation Inversion Methods Thomas Sievert September 12th, 2017 Karlskrona, Sweden.
Prospects for real-time physics-based thermosphere ionosphere models for neutral density specification and forecast Tim Fuller-Rowell, Mariangel Fedrizzi,
Formosat3 / COSMIC The Ionosphere as Signal and Noise
Ionospheric Effect on the GNSS Radio Occultation Climate Data Record
Formosat3 / COSMIC The Ionosphere as Signal and Noise
Comparability and Reproducibility of RO Data
Directions of Inquiry Given a fixed atmospheric CO2 concentration assimilation scheme, what is the optimal network expansion? Given the wide array of available.
Ling Wang and M. Joan Alexander
Data Assimilation Initiative, NCAR
Effects and magnitudes of some specific errors
Data Assimilation and the GAIM Model at the Air Force Weather Agency
Presentation transcript:

ROSA – ROSSA Validation results R. Notarpietro, G. Perona, M. Cucca

COSMIC Data - COSMIC 1: 75 events (10 rising) well distributed in time (2 days for each season) and space - COSMIC 2: data related 31/12/2007 (1120 events) CHAMP Data setting events related to 22/01/2004 observations: INPUT DATA

- COSMIC 2: data related 31/12/2007 (> 1200 events) 90°  65°  North Polar regions 65°  35°  North Temperate regions 35°   35°  Tropics  35°   65°  South Temp. regions  65°   90°  South Polar regions R S TOT* * These figures are related to data couples compared at different levels after outliers removal

CHAMP Data ROSA-ROSSA CDAAC (COSMIC) ISDC (CHAMP) COSMIC Data We can quantify differences due to different algorithm implementations (CHAMP Data, COSMIC Data or future ROSA-ROSSA products ARE NOT First Level Benchmark) This analysis has been carried out even if it is not an absolute validation of ROSA-ROSSA software 1 Validation considering Third Level Benchmarks (output of other RO SWs)

COSMIC 1/2 Data 2006/2007 N e (h) COSMIC 2 Data 31/12/2007 T(h) Specific humidity (h) p wet (h)  (a) stratosph. optimized  (a) iono-free COSMIC 2 Data 31/12/2007 n(h) CHAMP Data 22/01/04 Orbits Excess phases 1 Validation considering Third Level Benchmarks (output of other RO SWs)

2 Validation considering Second Level Benchmarks (ECMWF Re-analysis) ROSA-ROSSA CDAAC (COSMIC) ISDC (CHAMP) N RSA (h) N COS (h) T RSA (h) T COS (h) WV RSA (h) WV COS (h) Dati COSMIC 2 31/12/2007

2 Validation considering Second Level Benchmarks (ECMWF Re-analysis) ROSA-ROSSA CDAAC (COSMIC) ISDC (CHAMP) N RSA (h) N COS (h) ECMWF Re-analysis spatially and temporally co-located N ECM (h) T RSA (h) T COS (h) T ECM (h) WV RSA (h) WV COS (h) WV ECM (h) following Tangent Points Dati COSMIC 2 31/12/2007

2 Validation considering Second Level Benchmarks (ECMWF Re-analysis) ROSA-ROSSA CDAAC (COSMIC) ISDC (CHAMP) N RSA (h) N COS (h) ECMWF Re-analysis spatially and temporally co-located N ECM (h) T RSA (h) T COS (h) T ECM (h) WV RSA (h) WV COS (h) WV ECM (h) following Tangent Points Dati COSMIC 2 31/12/2007

2 Validation considering Second Level Benchmarks (ECMWF Re-analysis) ROSA-ROSSA CDAAC (COSMIC) ISDC (CHAMP) N RSA (h) N COS (h) ECMWF Re-analysis spatially and temporally co-located N ECM (h) T RSA (h) T COS (h) T ECM (h) WV RSA (h) WV COS (h) WV ECM (h) following Tangent Points Outliers identification and removal and Mean Fractional Error evaluation Dati COSMIC 2 31/12/2007

Statistic definition

Outlier Identification through T- Student test (  3  threshold) and rejection Mean + Std Mean - Std mean Statistic definition

OPEN PROBLEMS WITH THE FIRST ROSA-ROSSA RELEASE Cosmic Raw Excess-phase profiles filtering

OPEN PROBLEMS WITH THE FIRST ROSA-ROSSA RELEASE Cosmic Raw Excess-phase profiles filtering

OPEN PROBLEMS WITH THE FIRST ROSA-ROSSA RELEASE Cosmic Raw Excess-phases filtering Statospheric Bending optimization (we are actually using CIRA- Q climatology; ROSA-ROSSA VE will adopt data coming from Numerical Weather Prediction Models) Wave Optics techniques for Bending angle extraction in low troposphere (foreseen for ROSA-ROSSA VE). Actually DG_ATMO is validated giving COSMIC data in input. Electron Density profile extraction through ROSA observations is critical given ROSA configuration and observation scheduling

 RSA (a) CDAAC (COSMIC)  COS (a) 1 Validation considering Third Level Benchmarks (output of other RO SWs) BENDING LEVEL

SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA Rising Setting North Pole North Temperate Tropics South Temperate South Pole Number of events

 (a) North Pole North Temperate Tropics South Temperate South Pole SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA

 (a) North Pole North Temperate Tropics South Temperate South Pole SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA

 (a) North Pole North Temperate Tropics South Temperate South Pole SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA

 (a) North Pole North Temperate Tropics South Temperate South Pole SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA

N RSA (h) CDAAC (COSMIC) N COS (h) 1 REFRACTIVITY LEVEL Validation considering Third Level Benchmarks (output of other RO SWs)

N (h) North Pole North Temperate Tropics South Temperate South Pole SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA

N (h) North Pole North Temperate Tropics South Temperate South Pole SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA

Validation considering Third Level Benchmarks (output of other RO SWs) T RSA (h) CDAAC (COSMIC) T COS (h) 1 TEMPERATURE and humidity LEVEL DG_ATMO q RSA (h) q COS (h) e RSA (h) e COS (h)

DG_ATMO is a 1-D VAR scheme developed for retrieving temperature, humidity and pressure (only as dependent variable) for the ROSA observations. The Background profile is extracted by NCEP long-term mean (365 days) reanalysis. Simplified version of error covariance matrices DG_ATMO

SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA T(h)

SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA e(h)

SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA q(h)

Our scheme differs from the COSMIC one. –Formulation of hypotheses to develop the 1D-VAR scheme –Formulation of error covariance matrices –Background fields Results are not any different! DG_ATMO

Validation considering Third Level Benchmarks (output of other RO SWs) Ne RSA (h) CDAAC (COSMIC) Ne COS (h) 1 ELECTRON DENSITY LEVEL DG_DELN

The DG_DELN Data Generator evaluates the electron density profile in the ionosphere, using the Onion Peeling algorithm. Since the ray bending in the ionosphere is small enough, the straight- line propagation from GPS to LEO satellites has been assumed for the GPS signals. As required by the inversion technique adopted, the spherical symmetry for the electron density of the ionosphere has been assumed. Excess phase measurements at L1 and L2 GPS frequencies during one occultation event are used to compute the TEC in the shell determined by the LEO orbit (calibrated TEC). DG_DELN

COSMIC SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA Ne(h)

DG_DELN COSMIC SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA Ne(h)

DG_DELN COSMIC SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA

DG_DELN COSMIC SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA

DG_DELN COSMIC SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA Ne(h)

DG_DELN COSMIC SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA Ne(h)

DG_DELN COSMIC SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA Ne(h)

DG_DELN COSMIC SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA Ne(h)

DG_DELN COSMIC SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA Ne(h)

DG_DELN COSMIC SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA Ne(h)

average +/- st.dev. average SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA Ne(h)

ROSA-ROSSA CDAAC (COSMIC) N RSA (h) N COS (h) ECMWF Re-analysis spatially and temporally co-located N ECM (h) 2 Validation considering Second Level Benchmarks (ECMWF Re-analysis) REFRACTIVITY LEVEL

North Pole North Temperate Tropics South Temperate South Pole RISING Number of events SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF

N (h) North Pole North Temperate Tropics South Temperate South Pole RISING Height [km] 25 SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF

N (h) North Pole North Temperate Tropics South Temperate South Pole RISING Height [km] 25 SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF

North Pole North Temperate Tropics South Temperate South Pole SETTING Number of events SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF

N (h) North Pole North Temperate Tropics South Temperate South Pole Height [km] 25 SETTING SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF

N (h) North Pole North Temperate Tropics South Temperate South Pole Height [km] 25 SETTING SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF

2 TEMPERATURE and Spec. Humidity LEVEL ROSA-ROSSA T RSA (h) ECMWF Re-analysis spatially and temporally co-located T ECM (h) DG_ATMO q RSA (h) q ECM (h) Validation considering Second Level Benchmarks (ECMWF Re-analysis)

Use the closest horizontal grid point (in the space-time) domain per each vertical level, this means reconstructing an ECMWF “slanted” vertical profile Interpolation of ECMWF and ROSA on a common vertical grid (100 m vertical resolution like the COSMIC one). 25 Pressure levels ECMWF data, 0.25 degree horizontal resolution DG_ATMO

SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF T(h)

SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF q(h)

2 ELECTRON DENSITY LEVEL ROSA-ROSSA Ne RSA (h) IONOGRAMS Ne true (h) DG_DELN Validation considering Second Level Benchmarks (ECMWF Re-analysis)

DG_DELN derived profiles are compared with ionosonde derived (bottomside) profiles. The distance between the Ionosonde location and the DG_DELN derived peak location has been chosen to be less than [2.5° x 2.5°] in [lat. x lon.] and 15 min in time. The ionograms have been selected and scaled by K. Alazo of the Instituto Geofisica y Astronomia, La Habana, Cuba in the framework of the STEP program of ICTP. DG_DELN

IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

DG_DELN IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

DG_DELN IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

DG_DELN IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

DG_DELN IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

DG_DELN IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

DG_DELN IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

DG_DELN IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

DG_DELN IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

DG_DELN IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

DG_DELN IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

DG_DELN IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

DG_DELN IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

DG_DELN IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

DG_DELN IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

DG_DELN IONOSONDE SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF Ne(h)

Statistic definition from Kursinsky et al., JGR1997

Mean + Std Mean - Std mean Statistic definition Outlier Identification through T- Student test (  3  threshold) and rejection

N (h) North Pole North Temperate Tropics South Temperate South Pole SW ROSA-ROSSA 3.0 VALIDATION VS COSMIC DATA

N (h) North Pole North Temperate Tropics South Temperate South Pole RISING Height [km] 25 SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF

N (h) North Pole North Temperate Tropics South Temperate South Pole Height [km] 25 SETTING SW ROSA-ROSSA 3.0 VALIDATION VS ECMWF