Module 1.2 Introduction to Verilog UNIT 1 : Introduction to Verilog Module 1.2 Introduction to Verilog Verilog Modeling
Levels of Abstraction There are four different levels of abstraction in verilog: Behavioral /Algorithmic Data flow Gate level Switch level. We will cover Gate level, Data flow and Behavioral Level modeling
Behavioral level This level describes a system by concurrent algorithms (Behavioral). Each algorithm itself is sequential, that means it consists of a set of instructions that are executed one after the other. Functions, Tasks and Always blocks are the main elements. There is no regard to the structural realization of the design.
Simple Behavioral Model: the always block Always waiting for a change to a trigger signal Then executes the body module and_gate (out, in1, in2); input in1, in2; output out; reg out; always @(in1 or in2) begin out = in1 & in2; end endmodule Not a real register!! A Verilog register Needed because of assignment in always block Specifies when block is executed I.e., triggered by which signals
Register-Transfer Level / Data flow Designs using the Register-Transfer Level specify the characteristics of a circuit by operations and the transfer of data between the registers. An explicit clock is used. RTL design contains exact timing possibility, operations are scheduled to occur at certain times. Modern definition of a RTL code is "Any code that is synthesizable is called RTL code".
Data Flow Modeling Continuous assignment statement is used. Keyword assign is used followed by = Most common operator types are
Examples assign x = a + b; assign y = ~ x ; // y=x’ assign y = a & b; // y= ab assign w = a ^ b; //y= a b assign y = x >> 1; //shift right x by 1 assign y = {b, c}; //concatenate b with c e.g. b = 3’b101, c =3’b 111 y = 101111 assign {cout , sum} = a + b + cin; //concatenate sum and cout
Data flow Model Combinational logic Describe output as a function of inputs Note use of assign keyword: continuous assignment module and_gate (out, in1, in2); input in1, in2; output out; assign out = in1 & in2; endmodule Output port of a primitive must be first in the list of ports Restriction does not apply to modules
Gate Level/ Structural Within the logic level the characteristics of a system are described by logical links and their timing properties. All signals are discrete signals. They can only have definite logical values (`0', `1', `X', `Z`). The usable operations are predefined logic primitives (AND, OR, NOT etc gates). Using gate level modeling might not be a good idea for any level of logic design. Gate level code is generated by tools like synthesis tools and this netlist is used for gate level simulation and for backend.
Gate Level Modeling/Structural In gate level modeling a circuit can be defined by use of logic gates. These gates predefined in verilog library. The basic gates and their syntax is as follows: and gate_name(output, inputs); or gate_name(output, inputs); not gate_name (output, inputs); xor gate_name(output, inputs); nor gate_name(output, inputs); nand gate_name(output, inputs); xnor gate_name(output, inputs);
Structural Model Composition of primitive gates to form more complex module Note use of wire declaration! module xor_gate (out, a, b); input a, b; output out; wire abar, bbar, t1, t2; inverter invA (abar, a); inverter invB (bbar, b); and_gate and1 (t1, a, bbar); and_gate and2 (t2, b, abar); or_gate or1 (out, t1, t2); endmodule By default, identifiers are wires
Structural vs Behavioral Supports structural and behavioral descriptions Structural Explicit structure of the circuit How a module is composed as an interconnection of more primitive modules/components E.g., each logic gate instantiated and connected to others Behavioral Program describes input/output behavior of circuit Many structural implementations could have same behavior E.g., different implementations of one Boolean function
Modeling types The module describes a component in the circuit Two ways to describe: Structural Verilog List of components and how they are connected Just like schematics, but using text Hard to write, hard to decode Useful if you don’t have integrated design tools Behavioral Verilog Describe what a component does, not how it does it Synthesized into a circuit that has this behavior
Structural Model Example of full-adder Data flow Structural module full_addr (A, B, Cin, S, Cout); input A, B, Cin; output S, Cout; assign {Cout, S} = A + B + Cin; endmodule module adder4 (A, B, Cin, S, Cout); input [3:0] A, B; input Cin; output [3:0] S; output Cout; wire C1, C2, C3; full_addr fa0 (A[0], B[0], Cin, S[0], C1); full_addr fa1 (A[1], B[1], C1, S[1], C2); full_addr fa2 (A[2], B[2], C2, S[2], C3); full_addr fa3 (A[3], B[3], C3, S[3], Cout); Data flow Structural