イメージスライサー型可視光 面分光ユニットの開発 Development of an integral field unit (IFU) with an image slicer Shinobu Ozaki, Satoshi Miyazaki, Takuya Yamashita, Takashi Hattori,

Slides:



Advertisements
Similar presentations
HIRES Technical concept and design E. Oliva, HIRES meeting, Brera (Milan, Italy)1.
Advertisements

GLAO instrument specifications and sensitivities
1 ATST Imager and Slit Viewer Optics Ming Liang. 2 Optical layout of the telescope, relay optics, beam reducer and imager. Optical Layouts.
M3 Instrument Design and Expected Performance Robert O. Green 12 May 2005.
Echelle Spectroscopy Dr Ray Stathakis, AAO. What is it? n Echelle spectroscopy is used to observe single objects at high spectral detail. n The spectrum.
JWST IFUs and Data Tool Development Plans Tracy Beck JWST NIRSpec Instrument Scientist.
Spectroscopic Reference Design Options D. L. DePoy Texas A&M University.
Polarimetry Christoph Keller. Polarimetry Requirements Polarization sensitivity: amount of fractional polarization that can be detected above a (spatially.
A novel hyperspectral imager based on microslice technology A novel hyperspectral imager based on microslice technology Ray Sharples, Danny Donoghue, Robert.
Instrumentation Concepts Ground-based Optical Telescopes
Wide-field, triple spectrograph with R=5000 for a fast 22 m telescope Roger Angel, Steward Observatory 1 st draft, December 4, 2002 Summary This wide-field,
PALM Project Jan COO All-Hands Mtg. Project 1640 is an infrared, coronographic integral-field spectrograph for high-contrast companion.
ADASS XVII - September, Software Modelling of IFU Spectrometers Nuria P. F. Lorente UK Astronomy Technology Centre Royal Observatory, Edinburgh,
Astronomical Spectroscopy
KMOS Instrument Science Team Review Instrument overview.
Science Specification of SOLAR-C payload SOLAR-C Working Group 2012 July 23.
W. M. Keck Observatory Subaru Users’ Meeting
Masahiro Konishi (IoA, UTokyo), SWIMS Team S W I M S.
1 High-z galaxy masses from spectroastrometry Alessio Gnerucci Department of Physics and Astronomy University of Florence 13/12/2009- Obergurgl Collaborators:
Dae-Sik Moon Department of Astronomy & Astrophysics University of Toronto Wide Field, High Resolution Integral-Field Near-Infrared Spectroscopy of Extended.
1 Korean Activities in IR Space Missions - Past, Current and Future - Woong-Seob Jeong 1 on behalf of Korean Infrared Astronomy Group 1 KASI, Korea Ramada.
AAO Fibre Instrument Data Simulator 10 October 2011 ROE Workshop 2011 Michael Goodwin Tony Farrell Gayandhi De Silva Scott Smedley Australian Astronomical.
The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer for JWST Martyn Wells MIRI EC & UKATC.
1 FRIDA Engineering Status 17/05/07 Engineering Status May 17, 2007 F.J. Fuentes InFraRed Imager and Dissector for Adaptive Optics.
SSG Workshop 경희대 김은빈 김민배 천경원 The GMT-CfA, Carnagie, Catolica, Chicago Large Earth Finder (G-CLEF)
14 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
High Resolution Echelle Spectrograph for Chinese Weihai 1m Telescope. Leiwang, Yongtian Zhu, Zhongwen Hu Nanjing institute of Astronomical Optics Technology.
Integral Field Spectrograph Eric PRIETO CNRS,INSU,France,Project Manager 11 November 2003.
INTEGRAL FIELD SPECTROSCOPY AT THE VLT STAR (CLUSTER) FORMATION IN 3D : INTEGRAL FIELD SPECTROSCOPY AT THE VLT Markus Kissler-Patig (Instrument Scientist.
18 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
DL – IFU (Prieto/Taylor) Slicer: –25mas sampling … 0.9mm slices ~f/250 (assuming no anamorphism) Detector = 2k array of 18um pixels –Slit subtends 1-pixel.
Multi-slit spectroscopy In sky-noise dominated conditions (most interesting!) the use of slits is essential: eg: Faint object, extra-galactic, surveys:
Integral Field Spectroscopy. David Lee, Anglo-Australian Observatory.
Upgrade plan of the MOA 1.8-m telescope F. Abe MOA collaboration 19 Jan. 2009, 13th Microlensing Paris.
An IFU for IFOSC on IUCAA 2m Telescope
SWIIMS A New NIR MOS Spectrograph for TAO 6.5m Telescope K. Motohara, M. Konishi, S. Sako, N. Mitani, T. Aoki, K. Asano, M. Doi, T. Handa, K. Kawara, K.
Central Engine of AGN Xi’ian October 2006 Black Hole Mass Measurements with Adaptive Optic Assisted 3D-Spectroscopy Courtesy ESO Guia Pastorini Osservatorio.
NEXT GENERATION OPTICAL SPECTROGRAPH FOR NOAO Samuel Barden, Charles Harmer, Taft Armandroff, Arjun Dey, and Buell Jannuzi (National Optical Astronomy.
The Study of IFU for the Li Jiang 2.4m Telescope ZHANG Jujia 张居甲 Yun Nan Astronomical Observatory. CAS Sino-French IFU Workshop Nov Li Jiang.
KMOS Instrument Overview & Data Processing Richard Davies Max Planck Institute for Extraterrestrial Physics  What does KMOS do?  When will it do it?
Nonlinear force-free coronal magnetic field extrapolation scheme for solar active regions Han He, Huaning Wang, Yihua Yan National Astronomical Observatories,
WFIRST IFU -- Preliminary “existence proof” Qian Gong & Dave Content GSFC optics branch, Code 551.
The Prime Focus Imaging Spectrograph Design and Capabilities
E-ELT-HIRES possible design and capabilities E. Oliva (INAF-Firenze) B. Delabre (ESO) E. Oliva B. Delabre, ELT-HIRES, Cambridge1 o A very brief.
Preliminary Foreoptics Design for FASOT of 2nd Generation L. Chang, X.M Cheng
Science with Giant Telescopes - Jun 15-18, Instrument Concepts InstrumentFunction range (microns) ResolutionFOV GMACSOptical Multi-Object Spectrometer.
Wide field telescope using spherical mirrors Jim Burge and Roger Angel University of Arizona Tucson, AZ Jim
Overview Science drivers AO Infrastructure at WHT GLAS technicalities Current status of development GLAS: Ground-layer Laser Adaptive optics System.
Astronomical Observational Techniques and Instrumentation
GMT’s Near IR Multiple Object Spectrograph - NIRMOS Daniel Fabricant Center for Astrophysics.
Role of FOCAS Takashi Hattori (as FOCAS SA) 12/9/2014.
Competitive Science with the WHT for Nearby Unresolved Galaxies Reynier Peletier Kapteyn Astronomical Institute Groningen.
Introduction of RAVEN Subaru Future Instrument Workshop Shin Oya (Subaru Telescope) Mitaka Adaptive Optics Lab Subaru Telescope Astronomical.
F. Pepe Observatoire de Genève Optical astronomical spectroscopy at the VLT (Part 2)
Spatially Resolved Spectroscopy ASTR 3010 Lecture 17 Textbook Ch. 11.
2015 GSICS Annual Meeting, Deli India March 16~20, 2015 Xiuqing Hu National Satellite Meteorological Center, CMA Yupeng Wang, Wei Fang Changchun Institute.
Integral Field Spectrograph Eric Prieto LAM. How to do 3D spectroscopy.
CASE spectrograph Spectrograph Optical Specifications
Astronomical Spectroscopic Techniques
Single Object & Time Series Spectroscopy with JWST NIRCam
Slicer development Eric Prieto LAM.
Spectrophotometric calibration of the IFU spectrograph
NVT capillary collimator NORTH NIGHT VISION TECHNOLOGY CO., LTD
ESAC 2017 JWST Workshop JWST User Documentation Hands on experience
SNAP spectrograph demonstrator : Test Plan
An IFU slicer spectrometer for SNAP
Spectral Flow Cytometry
Overview Instrument Role Science Niches Consortium science
NIR Spectroscopy at Gemini South
Astronomical Observational Techniques and Instrumentation
Presentation transcript:

イメージスライサー型可視光 面分光ユニットの開発 Development of an integral field unit (IFU) with an image slicer Shinobu Ozaki, Satoshi Miyazaki, Takuya Yamashita, Takashi Hattori, Norio Okada, Kenji Mitsui (NAOJ) 2011/01/18 Subaru Future Instrumentation Workshop

Integral Field Spectroscopy is a powerful tool 3D data (XY+λ) is simultaneously obtained. Science example –Detailed studies of AGN emission line regions Velocity structure Excitation structure + +++ + ++ NGC1068 [OIII] 5007 channel map (Gerssen et al. 2006)

Project outline Subaru TMT

Why image slicer type IFU? Advantage –Dead space on a detector is the smallest. Drawback –Difficulty of fabrication. Diminishing thanks to technology progress From ifu wiki

IFU optical layout Slicer Pupil mirrors Pseudo slits Pickup mirror Enlarger Field optics Top view Side view From telescope To spectrograph Based on GNIRS at Gemini observatory. We are considering another possible layout. We select the better layout, comparing these two.

IFU parameters Slice width (arcsec)0.3 FOV (arcsec 2 )*12.0 x x 11 Number of slices2835 Fore-optics magnification3.7 Slice dimension (mm x mm)22.2 x x 2.42 Throughput>80% *: Aspect ratio of FOV is fixed to be about 1.4.

Manufacturing methods for mirrors High precision machining for metal –Advantage Fast fabrication speed Easy to fabricate an aspheric surface Can make monolithic module –Drawback Only a few experiences in astronomical instrumentation Polishing for glass –Advantage Achievable low surface roughness –Drawback Slow fabrication speed Difficult to fabricate an aspheric surface Cannot make monolithic module Manufacturing methods are closely coupled with optical layout. We choose the method after the decision of the optical layout.

8 Fabrication sample of high precision machining TOSHIBA MACHINE CO.,LTD Surface roughness : Ra 0.7nm Diamond turning

Comparison with other instruments GeminiKyoto3DII + IFU FCOAS + IFU IFU typeFiber LensletSlicer FoV54” x 54” 27” x 27” 13” x 13” 7” x 5”(object) + 5” x 3.5”(sky) 5” x 3.5”(object) + 3.5” x 1.75”(sky) 3.6” x 2.8”(object) + 3.6” x 0.6”(sky) 12” x 8” Spatial sampling0.67” 0.33” 0.2”0.096”0.3” R220 – 3,1001,018 – 7,0901, ,000  range 395 – 1,015 nm360 – 1,100nm nm370-1,000 nm # of Spectrograph4111 SpectrographMultipurpose CCD format2k x 4k x 44k x 6k2k x 2k4k x 4k Information amount *1.64 x x x x 10 6 * (Information amount) = (Spatial element #) x (Spectral element #)

Comparison with future instruments Keck FCOAS + IFU IFU typeSlicer FoV60” x 60” (7.5” x 7.5”)20” x 8.4”, 16.8”, 33.6”12” x 8” Slice width0.2” (0.025”)0.35”, 0.7”, 1.4”0.3” R1,750 – 3,7501, , ,000  range 4,650 – 9,300 Å 3,500 – 10,000 Å 3,700-10,000 Å # of Spectrograph241 (2 channels for red and blue)1 SpectrographDedicated Multipurpose CCD format4k x 4k x 244k x 4k x 24k x 4k Information amount *200 x 10 6 ?1.6 x 10 6 * (Information amount) = (Spatial element #) x (Spectral element #)

Schedule FY2010 –Parameter search (Done) –Decision on optical layout ( till end of Jan.) –Test fabrications of each modules (from Feb.) FY2011 –IFU for FOCAS Detailed design Fabrications Assemble Performance verifications FY2012 –Test observations with FOCAS+IFU –Start developing the IFU for TMT/WFOS

Budgets Applied for Grants-in-Aid for Scientific Research (Kiban-B) Applied for NAOJ internal budget

Summary We are developing the slicer type optical IFU. –1st step: IFU for FOCAS/Subaru –2nd step: IFU for WFOS/TMT FY2012: First light of IFU for FOCAS