Airborne GPS Positioning with cm-Level Precisions at Hundreds of km Ranges Gerald L. Mader National Geodetic Survey Silver Spring, MD National Geodetic.

Slides:



Advertisements
Similar presentations
Experimental Results from “BigAnt”, a Large Format Antenna for High Quality Geodetic Ground Stations Gerald Mader National Geodetic Survey (NGS) Silver.
Advertisements

ADJUSTMENT COMPUTATIONS
A quick GPS Primer (assumed knowledge on the course!) Observables Error sources Analysis approaches Ambiguities If only it were this easy…
RTN Methodologies & Best Practices Neil D. Weston National Geodetic Survey, NOS, NOAA Silver Spring, MD March 20, 2014.
Limits of static processing in a dynamic environment Matt King, Newcastle University, UK.
Space Weather influence on satellite based navigation and precise positioning R. Warnant, S. Lejeune, M. Bavier Royal Observatory of Belgium Avenue Circulaire,
1 GPS processing. Sat07_82.ppt, Directly from the observations 2.From differences (especially if vectors between points are to be determined)
1 GPS processing. Sat05_82.ppt, Directly from the observations 2.From differences (especially if vectors between points are to be determined)
GTECH 201 Session 08 GPS.
03/18/05OSU GAMIT/GLOBK1 TRACK: GAMIT Kinematic GPS processing module
GPS Accuracy Testing Using: “RTK” (Real Time Kinematic) & “One Step Transformations” (Site Calibrations)
13/06/13 H. Rho Slide 1 Geodetic Research Laboratory Department of Geodesy and Geomatics Engineering University of New Brunswick Evaluation of Precise.
Geodetic Survey Division EARTH SCIENCES SECTOR Slide 1 Real-Time and Near Real-Time GPS Products and Services from Canada Y. Mireault, P. Tétreault, F.
Planning for airborne LIDAR survey Dr.Lamyaa Gamal El-deen.
1 On the use of Numerical Weather Models to Predict Neutral-Atmosphere Delays Felipe G. Nievinski.
The RSGPS program and OPUS - RS Getting There Faster –
Relative vs Absolute Antenna Calibrations: How, when, and why do they differ? A Comparison of Antenna Calibration Catalogs Gerald L Mader 2, Andria L Bilich.
Mission Planning and SP1. Outline of Session n Standards n Errors n Planning n Network Design n Adjustment.
OPUS : Online Positioning User Service
Part VI Precise Point Positioning Supported by Local Ionospheric Modeling GS894G.
Simultaneous Estimations of Ground Target Location and Aircraft Direction Heading via Image Sequence and GPS Carrier-Phase Data Luke K.Wang, Shan-Chih.
Effects of ionospheric small- scale structures on GNSS G. WAUTELET Royal Meteorological Institute of Belgium Ionospheric Radio Systems & Techniques (IRST)
Positioning America for the Future NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Ocean Service National Geodetic Survey INTRODUCTION TO CORS,
NGS GPS ORBIT DETERMINATION Positioning America for the Future NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Ocean Service National Geodetic.
VRS Network The Magic Behind the Scene
Titelmaster Geometrical and Kinematical Precise Orbit Determination of GOCE Akbar Shabanloui Institute of Geodesy and Geoinformation, University of Bonn.
How Does GPS Work ?. Objectives To Describe: The 3 components of the Global Positioning System How position is obtaining from a radio timing signal Obtaining.
High Accuracy Nationwide Differential Global Positioning System (HA-NDGPS) UPDATE Jim Arnold September, 2009.
Part Va Centimeter-Level Instantaneous Long-Range RTK: Methodology, Algorithms and Application GS894G.
Part V Centimeter-Level Instantaneous Long-Range RTK: Methodology, Algorithms and Application GS894G.
SVY 207: Lecture 13 Ambiguity Resolution
GOCE Workshop at ESA LP Symposium, Bergen, 29./30.June, 2010 Precise Science Orbits for the GOCE Satellite – Aiming at the cm-level H. Bock 1, A. Jäggi.
Geodetic Research Laboratory Department of Geodesy and Geomatics Engineering University of New Brunswick 01/06/27 S.Bisnath A NEW TECHNIQUE FOR GPS-BASED.
B ≥ 4 H & V, KNOWN & TRUSTED POINTS? B LOCALIZATION RESIDUALS-OUTLIERS? B DO ANY PASSIVE MARKS NEED TO BE HELD? RT BASE WITHIN CALIBRATION (QUALITY TIE.
Positioning America for the Future NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Ocean Service National Geodetic Survey GPS Products & Services.
P. Wielgosz and A. Krankowski IGS AC Workshop Miami Beach, June 2-6, 2008 University of Warmia and Mazury in Olsztyn, Poland
P. Alves and G. Lachapelle University of Calgary USM GPS Workshop Carrier Phase GPS Navigation for Hydrographic Surveys, and Seamless Vertical Datums March.
Sunil Bisnath and David Dodd Hydrographic Science Research Center, Department of Marine Science, University of Southern Mississippi USCG C2CEN Meeting.
A Geodesist’s View of the Ionosphere Gerald L. Mader National Geodetic Survey Silver Spring, MD.
Evaluating Aircraft Positioning Methods for Airborne Gravimetry: Results from GRAV-D’s “Kinematic GPS Processing Challenge” Theresa M. Damiani, Andria.
GSI Japan - 21st of June 1999 GPS-Positioning using Virtual Reference Stations - Theory, Analysis and Applications Herbert Landau Spectra Precision Terrasat.
Evaluating Aircraft Positioning Methods for Airborne Gravimetry: Results from GRAV-D’s “Kinematic GPS Processing Challenge” Theresa M. Damiani, Andria.
GALOCAD GAlileo LOcal Component for nowcasting and forecasting Atmospheric Disturbances R. Warnant*, G. Wautelet*, S. Lejeune*, H. Brenot*, J. Spits*,
SP Swedish National Testing and Research Institute Real-Time GPS Processing with Carrier Phase FILTER PARAMETER INFLUENCE ON GPS CARRIER PHASE REAL-TIME.
1 SVY 207: Lecture 12 GPS Error Sources: Part 2 –Satellite: ephemeris, clock, S/A, and A/S –Propagation: ionosphere, troposphere, multipath –Receiver:antenna,
M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products.
Three-Method Absolute Antenna Calibration Comparison Andria Bilich (1), Martin Schmitz (2), Barbara Görres (3), Philipp Zeimetz (3), Gerald Mader (1),
West Hills College Farm of the Future. West Hills College Farm of the Future Precision Agriculture – Lesson 2 What is GPS? Global Positioning System Operated.
Chapter 2 GPS Crop Science 6 Fall 2004 October 22, 2004.
1 SVY 207: Lecture 12 Modes of GPS Positioning Aim of this lecture: –To review and compare methods of static positioning, and introduce methods for kinematic.
GNSS Background for OPUS Projects Gerald L. Mader National Geodetic Survey Silver Spring, MD GNSS Background.
Positioning America for the Future NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Ocean Service National Geodetic Survey History, Uses and Future.
Civil and Environmental Engineering and Geodetic Science This file can be found on the course web page:
ST236 Site Calibrations with Trimble GNSS
Geodetic Applications of GNSS within the United States Dr. Gerald L. Mader National Geodetic Survey NOS/NOAA Silver Spring, Maryland USA Munich Satellite.
Geodetic Research Laboratory Department of Geodesy and Geomatics Engineering University of New Brunswick 2/20/2016 K. Cove 1 Carrier Phase Differential.
GPS ANTENNA CALIBRATION AT THE NATIONAL GEODETIC SURVEY Dr. Gerald L. Mader Geosciences Research Division National Geodetic Survey, NOS/NOAA Silver Spring,
1 CORS and OPUS for GIS Applications Richard Snay NOAA’s National Geodetic Survey ESRI International User Conference San Diego, California August 5, 2008.
SC – VRS Network To Support Surveying and Machine Control.
Errors in Positioning Matt King, Newcastle University, UK.
Limits of static processing in a dynamic environment Matt King, Newcastle University, UK.
Astronomical Institute University of Bern 1 Astronomical Institute, University of Bern, Switzerland * now at PosiTim, Germany 5th International GOCE User.
09/24/2008Unavco Track Intro1 TRACK: GAMIT Kinematic GPS processing module R King overview from longer T Herring.
Limits of static processing in a dynamic environment Matt King, Newcastle University, UK.
GPS Kinematic Positioning Program Dr. G. L. Mader
R. Warnant*, G. Wautelet*, S. Lejeune*, H. Brenot*,
KINEMATIC GPS AND AMBIGUITY RESOLUTION PROBLEM
Track Output Interpretation
Track Output Interpretation
Suggested Guidance for OPUS Projects Processing
Presentation transcript:

Airborne GPS Positioning with cm-Level Precisions at Hundreds of km Ranges Gerald L. Mader National Geodetic Survey Silver Spring, MD National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 2/25 ION – Savannah, GA Sept. 25, 2009 Outline Some results How it works Some more results Focus on airborne GPS NGS KINPOS program Post-processing Interactive, semi-automated Graph oriented

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 3/25 ION – Savannah, GA Sept. 25, 2009 Kinematic GPS Multiple base stations Find mean trajectory Look differences from mean 1 st example  LIDAR Mapping Project San Andreas Fault May 21, 2005  No external calibration  No repetitive measurements  1 epoch of data for each position  Positions can never be reoccupied Challenges: Emulate static

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 4/25 ION – Savannah, GA Sept. 25, 2009

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 5/25 ION – Savannah, GA Sept. 25, 2009

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 6/25 ION – Savannah, GA Sept. 25, 2009 North RMS=0.7cm East RMS=0.5cm Up RMS=2.0cm All component differences with tropo estimation

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 7/25 ION – Savannah, GA Sept. 25, 2009 Aircraft Height Differences Distances from Base Stations Aircraft Height

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 8/25 ION – Savannah, GA Sept. 25, 2009 λ k (dd(Φ j ) k + dd(N j ) k ) = dd(R i j ) dd(N j ) k = dd(R i j ) / λ k - dd(Φ j ) k R i j = [ ( x j – x i ) 2 + (y j – y i ) 2 + ( z j – z i ) 2 ] ½ KINPOS Technique Double Difference, Integer Fixed, Ion-free solutions Estimate integers from differential code solution

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 9/25 ION – Savannah, GA Sept. 25, 2009 Integer Search Range Search volume (integer range) must be large enough to include true position (correct integers). sv L1 L ± ± ± ± ± ± ± ± ± ± ± ± 2

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 10/25 ION – Savannah, GA Sept. 25, 2009 dd(Φ j ) 1 + dd(N j ) 1 = dd(R i j ) / λ 1 + I 1 dd(Φ j ) 2 + dd(N j ) 2 = dd(R i j ) / λ 2 + ( λ 2 / λ 1 ) I 1 I 1 = [λ 1 2 ( dd(Φ j ) 1 + dd(N j ) 1 ) – λ 1 λ 2 ( dd(Φ j ) 2 + dd(N j ) 2 )] / (λ 1 2 – λ 2 2 ) Ionosphere Filter Too many integer pairs  filter by predicted ion delay Insert all possible integer pairs Observed phases Predicted ionosphere

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 11/25 ION – Savannah, GA Sept. 25, N1/N Change in L1 Ionosphere Delay with N1,N2 Integer Pairs

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 12/25 ION – Savannah, GA Sept. 25, N1/N Select L1 Ionosphere Delays Near Zero

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 13/25 ION – Savannah, GA Sept. 25, 2009 {λ 1 λ 2 2 [( dd(Φ j ) 1 + dd(N j ) 1 )] – λ 1 2 λ 2 [( dd(Φ j ) 2 + dd(N j ) 2 )]} / (λ 2 2 – λ 1 2 ) = dd(R i j ) RMS = [ Σ j (A ij x i – v j ) 2 / (N j -1)] ½ Use integer pairs surviving ion filter to do ion-free, least squares solution Evaluate solutions using Root Mean Square (RMS) Least Squares Solutions Integer Search Principles 1. Correct integers give good RMS 2. Wrong integers give bad RMS 3. However, wrong integers can temporarily give good RMS

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 14/25 ION – Savannah, GA Sept. 25, 2009 Integer Pair Summary Permutation Sequence # sv L1 L2 # sv L1 L2 # sv L1 L2 118 … … 1 02 … … 1 12 … … 1 22 … … 1 14 … … 1 02 … … 218 … … 2 02 … … 2 12 … … 2 14 … … 2 02 … … 318 … … 3 02 … … 3 12 … … 3 14 … … 418 … … 4 02 … … 4 12 … … 4 14 … … 518 … … 5 02 … … 5 12 … … 5 14 … … 618 … … 6 02 … … 6 02 … … 718 … … 7 02 … … 7 14 … … 818 … … … … 918 … …

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 15/25 ION – Savannah, GA Sept. 25, Permutation Procedure Solution w/ 1 st 4 DDs If RMS good: Add next DD If RMS good: Add next DD If all DDs used and gave good RMS – Save the integer set If RMS bad: Advance to next 4 DD group

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 16/25 ION – Savannah, GA Sept. 25, 2009 RMS (mm) seconds Correct integer suite Incorrect integer suites contrast Evolution of RMS for Several Integer Suites Optimal is not always correct !

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 17/25 ION – Savannah, GA Sept. 25, 2009 dd(Φ j ) ion-free = dd(R i j ) + (ZTD 1 – ZTD R ) M 1 j – (ZTD 1 – ZTD R ) M jo dd(Φ j ) ion-free = dd(R i j ) + (C 1 * Δh + C 2 * Δh 2 ) ( M 1 j – M jo ) ZTD = ZTD 0 + C 1 * h + C 2 * h 2 + C 3 * h 3 + … ZTD = ZTD 0 e –h/H dd(Φ j ) ion-free = dd(R i j ) + ZTD 0 e –h/H ( M 1 j – M jo ) 1 st case – low altitude 2nd case – high altitude Troposphere Estimation

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 18/25 ION – Savannah, GA Sept. 25, 2009 Phase Center Fixed Radius 090 -π-π +π+π elv 0 Antenna Calibration Troposphere estimation assumes all elevation dependent effects are due to troposphere Any residual or unmodeled elevation dependencies will perturb troposphere delay solution Can cause significant height errors GPS antenna is primary contributor

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 19/25 ION – Savannah, GA Sept. 25, 2009

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 20/25 ION – Savannah, GA Sept. 25, 2009 Antenna Calibration L1 & L2 Phase Center Variation (PCV)

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 21/25 ION – Savannah, GA Sept. 25, 2009

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 22/25 ION – Savannah, GA Sept. 25, 2009 Aircraft Height Differences Distances from Base Stations Aircraft Height

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 23/25 ION – Savannah, GA Sept. 25, 2009 Quality Control Consistently low RMS Continuity of ionosphere delays Agreement of multiple trajectories

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 24/25 ION – Savannah, GA Sept. 25, 2009 Comparison – GRAFNAV & KINPOS

National Geodetic Survey National Ocean Service National Oceanic and Atmospheric Administration G. L. Mader - 25/25 ION – Savannah, GA Sept. 25, 2009 Conclusions Ionosphere filtering aids ambiguity resolution Estimating troposphere parameters improves heights Antenna calibrations strongly recommended Within limits used here, cm-level precisions achieved independent of range, elevation, altitude Accuracies (?)