In-situ mother (spinning) * Mass spectrometer (cold) (Bern) * Ion analyzers (0.03 – 30 keV): (1) Narrow mass range (Kiruna) (2) Wide mass range (Toulouse)

Slides:



Advertisements
Similar presentations
Master Programme in Space Engineering 300 ECTS = 5 year Luleå 2,5 year + Kiruna 2 year + Master thesis project 1/2 år Courses of ECTS = 5 weeks (some 15.
Advertisements

M. Yamauchi, I. Dandouras, H. Rème, and the NITRO Proposal Team ESWW-11, Liège, November 2014 Planetary Space Weather Session Nitrogen Ion TRacing Observatory.
Sudden appearance of sub- keV structured ions in the inner magnetosphere within one hour: drift simulation M. Yamauchi 1, Y. Ebihara 2, I. Dandouras 3,
XPS and SIMS MSN 506 Notes.
© The Aerospace Corporation 2011 AIM-1 Bill Lotko and Jim Clemmons The Aerospace Corporation 8 March 2011 SCIENCE GOAL Resolve Energetics, Sources and.
Richard M. Bionta XTOD July 19-21, 2005 UCRL-PRES-xxxxxx X Ray Diagnostics LCLS FAC Meeting Oct. 27, 2005.
SMART About NASA’s Magnetospheric Multiscale Mission (MMS) MAGNETIC RECONNECTION is a little-understood physical process at the heart of space weather.
Future instrumentation for high-energy solar physics a partial and partial survey David Smith.
TOF Mass Spectrometer &
Österreichische Akademie der Wissenschaften (ÖAW) / Institut für Weltraumforschung (IWF), Graz, Austria, T +43/316/ , iwf.oeaw.ac.atDownload:2013.
Southwest Research Institute NSF Conference on Small Satellites Plasma Instrument Miniaturization and Integration: Approaches and Limitations C.J. Pollock,
Electron interactions with CO 2 Bob Merlino Department of Physics and Astronomy The University of Iowa Iowa City, IA U. S. Department of Energy National.
NASA Cassini Spacecraft Technology Report Nicole Iwaki ITMG
Brief introduction of YINGHUO-1 Micro-satellite for Mars environment exploration J. Wu, G. Zhu, H. Zhao, C. Wang, L. Lei, Y. Sun, W. Guo and S. Huang Center.
RUSSIAN SPACE MISSIONS FOR SOLAR-TERRESTRIAL SCIENCE ILWS-2011 A.A. Petrukovich, L.M. Zelenyi Space Research Institute V.D. Kuznetsov IZMIRAN.
China National Report , Prague, Czech Republic.
Morphology of Inner Magnetospheric low-energy ions M. Yamauchi, et al. Swedish Institute of Space Physics (IRF), Kiruna.
FOV conditions (boom/solar panel must not block) Half-sphere (360° x 90°): MSA (place either +Z or -Z) entrance must stick out Tophat (360° x ~10°): MIMS,
Living With a Star Radiation Belt Storm Probes and Associated Geospace Missions D. G. Sibeck Project Scientist NASA Goddard Space Flight Center.
Fate of cold ions in the inner magnetosphere: energization and drift inferred from morphology and mass dependence M. Yamauchi 1, I. Dandouras 2, H. Reme.
Hot He + events in the inner magnetosphere observed by Cluster M. Yamauchi 1, I. Dandouras 2, H. Reme 2, H. Nilsson 1 (1) Swedish Institute of Space Physics.
Lesson 3: Design for Remote Sensing Your Mission 1; just like a real CubeSat.
MAVEN MARS ATMOSPHERE AND VOLATILE EVOLUTION.
1 Mars Micro-satellite Mission Japanese micro-satellite mission to Mars to study the plasma environment and the solar wind interaction with a weakly-magnetized.
Europe: IRF-Kiruna (Sweden), IRAP (Toulouse, France), UCL/MSSL (London, UK), LPP (Paris, France), FMI (Helsinki, Finland), Inst Space Sci. (Bucharest,
KuaFu Meeting Dec. 9, 2004 Frankfurt/Main 夸父计划 General consideration on KuaFu-B ( 夸父 B) KuaFu Meeting Dec. 9, 2004 Frankfurt Jing-Song Wang School of Earth.
1 THEMIS Inner Magnetosphere Review, Dec 20, 2008 Summary of THEMIS results in the inner magnetosphere Future mission operations discussion: –Science targets.
Gregory ClarkeTechnological Plasmas Research Group Time resolved diagnostics for pulsed magnetron plasmas.
Simulations of Radio Imaging in the Earth’s Magnetosphere J. L. Green, S. Boardsen, W. W. L. Taylor, S. F. Fung, R. F. Benson, B. Reinisch, and D. L. Gallagher.
1 SWEA pre-CDR Peer Review Particles and Fields Package (PFP) SWEA pre-CDR Peer Review Integration and Test 2011 March 29 Dave Mitchell.
NITRO for M4: IRF (Kiruna, Sweden), IRAP (Toulouse, France), UCL/MSSL (London, UK), LPP (Paris, France), U. Bern (Switzerland), Aalto U. (Helsinki, Finland),
Topics in Space Weather Earth Atmosphere & Ionosphere
Space Research Institute Russian magnetospheric & heliospheric missions.
Wave packet dynamics in atoms and molecules Eva Heesel Corinne Glendinning Helen Fielding Department of Chemistry University College London UCL Progress.
Why Accelerator Mass spectrometry (AMS) The determination of the concentration of a given radionuclide in a sample can be done in 2 ways: a) measure the.
BEPICOLOMBO MERCURY MISSION. The main questions about Mercury Why Mercury is so dense? What is the geological history of Mercury? What is the structure.
Substorm-origin sub-keV ring current ions: wedge-like structure ICS-9, Graz, ~7 Substorm : production of plasma Sub-keV ring current : fossil of.
How ARTEMIS Contributes to Key NLSI Objectives C.T. Russell, J. Halekas, V. Angelopoulos, et al. NLSI Lunar Science Conference Ames Research Center Monday,
Questions/Problems on SEM microcharacterization Explain why Field Emission Gun (FEG) SEM is preferred in SEM? How is a contrast generated in an SEM? What.
PART TWO Electronic Color & RGB values 1. Electronic Color Computer Monitors: Use light in 3 colors to create images on the screen Monitors use RED, GREEN,
Hot He + events in the inner magnetosphere observed by Cluster 1 Yamauchi, et al. (2014), JGR, doi: /2013JA Inner magnetosphere: Majority.
IRF (Kiruna, Sweden), IRAP (Toulouse, France), UCL/MSSL (London, UK), NASA/GSFC (USA), FMI (Helsinki, Finland), Inst Space Sci. (Bucharest, Romania), UNH.
IMAGE: Imager for Magnetopause-to-Aurora Global Exploration Goddard Space Flight Center Scientific Colloquium February 23, 2001.
ESS 265Low Energy Particle Instruments 1 Particle Measurements Types of particle measurements –Langmuir Probes –Retarding potential analyzers –Magnetic.
Zou Ziming 1 Ma Wenzhen Li Lei Zhao Hua Wang Chi 1: Center for Space Science and Applied Research Chinese Academy of Sciences Moscow ·
Large Area Plasma Processing System (LAPPS) R. F. Fernsler, W. M. Manheimer, R. A. Meger, D. P. Murphy, D. Leonhardt, R. E. Pechacek, S. G. Walton and.
| 9th MAG meeting, ESTEC, June 22-23, 2005 | page 1 Electron Spectrometer On Swarm.
ESS 265Low Energy Particle Instruments 1 Retarding Potential Analyzers In the ionosphere, mount along ram velocity, measure species densities –Ram speed.
Morphology of Inner Magnetospheric low- energy ions M. Yamauchi 1, I. Dandouras 2, H. Reme 2, R. Lundin 3, L.M. Kister 4, F. Mazouz 5, Y. Ebihara 6 (1)
PLASMA DENSITIES FROM SPACECRAFT POTENTIAL MEASUREMENTS CALIBRATED BY THE ASPOC, EDI, CIS, PEACE AND WHISPER EXPERIMENTS ON CLUSTER Arne Pedersen and Bjørn.
NITRO for M4: IRF (Kiruna, Sweden), IRAP (Toulouse, France), OHB-Sweden (Kista, Sweden), NASA/GSFC (USA), UNH (Durham, USA), LATMOS/IPSL (Guyancourt, France),
European Space Agency, version 1.0, Coordination Group for Meteorological Satellites - CGMS ESA SSA Programme Plans for Space Weather Missions.
Juno Steve Levin Juno Project Scientist April 1, 2016.
Gyeongbok Jo 1, Jongdae Sohn 2, KyeongWook Min 2, Yu Yi 1, Suk-bin Kang 2 1 Chungnam National University 2 Korea Advanced Institute of Science.
for Lomonosov-GRB collaboration
Magnetospheric Solitary Structure maintained by 3000 km/s ions and its relation to Auroral Bulge after a Substorm M. Yamauchi1, H. Nilsson1, I. Dandouras2,
Korea Aerospace Research Institute (KARI)
Environmental and Disaster Monitoring Small Satellite Constellation
M. Yamauchi1, I. Dandouras2, H. Reme2,
Sub-keV Phenomena of Dayside Ring Current
Energetic Neutral Atom Imaging of
How and at what rate is Earth slowly losing its atmosphere to space?
Magnetospheric solitary structure maintained by 3000 km/s ions as a cause of westward moving auroral bulge at 19 MLT M. Yamauchi1, I. Dandouras2, P.W.
Sources of < 10 keV ring current ions: supply mechanism?
GAJENDRA KUMAR EC 3rd YR. ROLL NO
Nitrogen and Oxygen Budget ExpLoration (NOBEL)
Schematic diagram of NMR set-up
ROSETTA simulations on SPIS for DFMS ion measurements
Satellite mission ideas using EISCAT_3D
NITRO A Mission to "Planet Earth"
Presentation transcript:

In-situ mother (spinning) * Mass spectrometer (cold) (Bern) * Ion analyzers (0.03 – 30 keV): (1) Narrow mass range (Kiruna) (2) Wide mass range (Toulouse) (3) No mass (LPP) (4) low G-factor mass (Japan) * Ion mass analyzer (> 30 keV) (UNH) * Electron (photoelectron) (London) * Magnetometer (Graz) * Waves (Ω N ≠Ω O ) (Prague) * Langmuir Probe (Brussels) * ENA monitoring substorm (Berkeley) * (Potential Control=SC subsystem) Possible methods for ion analyzers: Magnet, Magnet-TOF, reflection-TOF, MCP-MCP TOF, shutter-TOF Payload #1 * underline: core, * colored: important, * black: optional

Remote sensing & monitoring (3-axis) * Optical (emission) (LATMOS & Japan) (1) N + : 91 nm, 108 nm (2) N 2 + : 391 nm, 428 nm (3) NO + : nm, 4.3 µm (4) O + : 83 nm, 732/733 nm * Mass spectrometer (cold) (Goddard) * Ion analyzer (< 0.1 keV) (Kirina) * Electron (photoelectron) (London) * Langmuir Probe (Brussels) * Ionospheric sounder (Iowa) * Magnetometer (Graz/UCLA) * Waves (Ω N ≠Ω O ) (Prague) * Ionospheric optical emission (???) Payload #2 * underline: core, * colored: important, * black: optional Optical imager needs a scanner keep in-situ spacecraft within FOV.

Cluster statistics Note: Degradation of the sensor caused significant decay in probability from 2001 to 2006 (by > 20%)