Что такое спин? Историческая справка Спин и магнитный момент электрона Спины и магнитные моменты ядер Последствия (важные и менее важные) Спиновые взаимодействия.

Slides:



Advertisements
Similar presentations
Quantum Information Processing with Semiconductors Martin Eberl, TU Munich JASS 2008, St. Petersburg.
Advertisements

CHAPTER 4 CONDUCTION IN SEMICONDUCTORS
MR TRACKING METHODS Dr. Dan Gamliel, Dept. of Medical Physics,
Lecture #5 OUTLINE Intrinsic Fermi level Determination of E F Degenerately doped semiconductor Carrier properties Carrier drift Read: Sections 2.5, 3.1.
Topics in Condensed Matter Physics Lecture Course for graduate students CFIF/Dep. Física Spin-dependent transport theory Vitalii Dugaev Winter semester:
Lecture 1: A New Beginning References, contacts, etc. Why Study Many Body Physics? Basis for new Devices Complex Emergent Phenomena Describe Experiments.
ELEG 479 Lecture #9 Magnetic Resonance (MR) Imaging
From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) These PowerPoint color diagrams can only be used by.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
Magnetic Field (B) A photon generates both an electric and a magnetic field A current passing through a wire also generates both an electric and a magnetic.
LPS Quantum computing lunchtime seminar Friday Oct. 22, 1999.
Graduate Lecture Series 29 June – 3 July, 2009 Prof Ngee-Pong Chang Lecture 4 Electron Spin.
PCE STAMP Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics QUANTUM GLASSES Talk given at 99 th Stat Mech meeting, Rutgers, 10.
Spin transport in spin-orbit coupled bands
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Les Houches, June 2006.
Optical study of Spintronics in III-V semiconductors
Experimental observation of the Spin-Hall Effect in InGaN/GaN superlattices Student : Hsiu-Ju, Chang Advisor : Yang Fang, Chen.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
Spin Hall Effect induced by resonant scattering on impurities in metals Peter M Levy New York University In collaboration with Albert Fert Unite Mixte.
1 Applications of statistical physics to selected solid-state physics phenomena for metals “similar” models for thermal and electrical conductivity for.
1 Motivation: Embracing Quantum Mechanics Feature Size Transistor Density Chip Size Transistors/Chip Clock Frequency Power Dissipation Fab Cost WW IC Revenue.
A few fundamentals of NMR Dieter Freude. Harry Pfeifer's NMR-Experiment 1951 in Leipzig H. Pfeifer: Über den Pendelrückkoppelempfänger (engl.: pendulum.
Chapter 19 NMR Spectroscopy. Introduction... Nuclear Magnetic Resonance Spectrometry is based on the measurement of absorption of electromagnetic radiation.
Spintronic Devices and Spin Physics in Bulk Semiconductors Marta Luengo-Kovac June 10, 2015.
Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid Chapter 28 Nuclear Magnetic Resonance Spectroscopy.
Dissipationless quantum spin current at room temperature Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University.
BE 581 Intro to MRI.
Dynamical decoupling in solids
4. The Nuclear Magnetic Resonance Interactions 4a. The Chemical Shift interaction The most important interaction for the utilization of NMR in chemistry.
Observation of the spin-Hall Effect Soichiro Sasaki Suzuki-Kusakabe Lab. Graduate School of Engineering Science Osaka University M1 Colloquium.
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Basics of …….. NMR phenomenonNMR phenomenon Chemical shiftChemical shift Spin-spin splittingSpin-spin splitting.
Absorption and Emission of Radiation:
States and transitions
What happens to the current if we: 1. add a magnetic field, 2. have an oscillating E field (e.g. light), 3. have a thermal gradient H.
Dynamics of Polarized Quantum Turbulence in Rotating Superfluid 4 He Paul Walmsley and Andrei Golov.
Beam Polarimetry Matthew Musgrave NPDGamma Collaboration Meeting Oak Ridge National Laboratory Oct. 15, 2010.
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
ELECTRON THEORY OF METALS 1.Introduction: The electron theory has been developed in three stages: Stage 1.:- The Classical Free Electron Theory : Drude.
Spin Precession Animation “DEMO”
Introduction to Spintronics
A. Bondarevskaya Highly charged ion beam polarization and its application to the search for the parity nonconservation effects in ions
The Structure and Dynamics of Solids
Förster Resonance Energy Transfer (FRET)
Electron-nuclear spin dynamics in optically pumped semiconductor quantum dots K.V.Kavokin A.F.Ioffe Physico-Technical Institute, St.Petersburg, Russia.
S. E. Thompson EEL Logic Devices Field Effect Devices –Si MOSFET –CNT-FET Coulomb Blockade Devices –Single Electron Devices Spintronics Resonant.
Magnetic Resonance Imaging Glenn Pierce, King’s College London, Department of Physics Introduction Edward Purcell and Felix Bloch were both awarded the.
Spin-orbit interaction in semiconductor quantum dots systems
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Preliminary doping dependence studies indicate that the ISHE signal does pass through a resonance as a function of doping. The curves below are plotted.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Thursday, Sept. 8, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #6 Thursday, Sept. 8, 2011 Dr. Jaehoon Yu Chapter 21 –Electric.
Chapter 7 The electronic theory of metal Objectives At the end of this Chapter, you should: 1. Understand the physical meaning of Fermi statistical distribution.
Chapter 7 in the textbook Introduction and Survey Current density:
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
제 4 장 Metals I: The Free Electron Model Outline 4.1 Introduction 4.2 Conduction electrons 4.3 the free-electron gas 4.4 Electrical conductivity 4.5 Electrical.
ACADEMIC AND SCIENTIFIC WORK ROBERTO PINEDA GÓMEZ
Question The bar magnet produces a magnetic field at the compass location Whose strength is comparable to that of the Earth. The needle of the compass.
Spin Hall magnetoresistance and swapping spin currents
3.1.4 Direct and Indirect Semiconductors
Spintronics By C.ANIL KUMAR (07AG1A0411).
all Cooper pairs must behave in the same way
10.3 NMR Fundamentals nuclear spin calculations and examples
Information Storage and Spintronics 18
Presentation transcript:

Что такое спин? Историческая справка Спин и магнитный момент электрона Спины и магнитные моменты ядер Последствия (важные и менее важные) Спиновые взаимодействия Введение в спиновую физику М. И. Дьяконов Université Montpellier II, France Лекция 1

Спин - это внутренний момент (количества движения = импульса) частицы Спин электрона открыли Гаудсмит и Уленбек в 1925 г Историческая справка Samuel Goudsmit (right) George Uhlenbeck (left) 1928

В то время Паули и многие другие (Лоренц, Крониг...) считали, что идея спина - это ерудна. Из воспоминаний Гаудсмита (1971): "The one thing I remember is that Ehrenfest said to me: "Well, that is a nice idea, though it may be wrong. But you don't yet have a reputation, so you have nothing to lose". Историческая справка Из письма Томаса Гаудсмиту (1926): " I think that you and Uhlenbeck have been very lucky to have your spinning electron published and talked about before Pauli heard of it."

На самом деле существование спина было видно уже в экспериментах Штерна и Герлаха (1921), которые были неправильно интерпретированы Историческая справка

P. A. M. Dirac Paul Adrien Maurice Dirac Диалог Дирака и Гейзенберга на корабле по дороге в Японию Dirac: 'Why do you dance?' Heisenberg: 'When there are nice girls, it is a pleasure' Dirac: 'But, Heisenberg, how do you know beforehand that the girls are nice?' Уравнение Дирака (1928) Релятивистское уравнение для электрон а, из которого существование спина следует автоматически В магнитном поле циклотронный период равен периоду прецессии спина! Предсказывает также магнитный момент электрона:

Проекция спина на любую ось = ±1/2 (в единицах ћ). S z = ± 1/2, и так же для S x и S y. В то же время S 2 = 3/4! Не странно ли? T. e. S x 2, S y 2 и S z 2 всегда существуют одновременно (не может быть S x 2 = 0) Магнитный момент электрона E = ± μB Связанная с этим энергия в магнитном поле:

Если шар с зарядом e, радиуса r вращается со скоростью на экваторе v, то его магнитный момент порядка Получается, что если v ~ c, то чтобы получить правильное значение μ нужно взять r ~ ħ/mc ~ 10 ‒ 10 cm ("комптоновская " длина) Zitterbewegung? Zitterbewegung and the Magnetic Moment of the Electron Basil S. Davis, Arxiv:

Спины и магнитные моменты других частиц Протон, нейтрон, и кварки, из которых они состоят, мюон и нейтрино, имеют спин = ½ Магнитный момент протона и нейтрона порядка eћ/mc, где теперь m это масса протона. Их магнитные моменты в ~ 2000 раз меньше магнитного момента электрона Ядра с четным числом протонов +нейтронов как правило имеют спин =0 и не обладают магнитным моментом Ядра с нечетным числом протонов+нейтронов обладают полуцелым спином Примеры: He 4 I = 0, He 3 I = 1/2, In 113 I = 9/2 Спин фотона = 1

Роль спина в Природе Спин электрона полуцелый, S=1/2 Электроны - фермионы Принцип Паули ХимияЖивая материя, хомо сапиенс, общество Наше сегодняшнее заседание Структура атомов, молекул, вещества

Спиновые взаимодействия 1. Диполь-дипольное взаимодействие 2. Спин-орбитальное взаимодействие 3. Обменное взаимодействие 4. Сверхтонкое взаимодействие со спинами ядер 5. Взаимодействие с внешним магнитным полем

Spin interactions Direct magnetic interaction – the dipole-dipole interaction between the magnetic moments of a pair of electrons. Order of magnitude ~ μ 2 /r 3. Normally negligible for electrons, however important for nuclear spins Exchange interaction – Coulomb interaction between electrons, which becomes spin- dependent because their wavefunction must be anti-symmetric. Is at the origin of ferromagnetism. Important in magnetic semiconductors Spin-orbit interaction – If an observer moves with a velocity v in an external electric field E, he will see a magnetic field B = (v/c) × E. Thus there is an effective magnetic field acting on the magnetic moment (spin) of a moving electron. Stongly enhanced for atoms with large Z. This interaction is responsible for most of the spin-related optical and transport effects Hyperfine interaction with lattice nuclei – Magnetic interaction between the electron and nuclear magnetic moments. Important for bands originating from s-states in atoms with large Z. Leads to spectacular phenomena in the strongly coupled electron ̶ nuclei spin system

Проекция спина на любую ось = ±1/2 (в единицах ћ). S z = ± 1/2, и так же для S x и S y. В то же время S 2 = 3/4! Не странно ли? T. e. S x 2, S y 2 и S z 2 всегда существуют одновременно (не может быть S x 2 = 0)

Я б смотреть на эти спины и за деньги не хотел... Саша Черный (1908) Введение в спиновую физику М. И. Дьяконов Université Montpellier II, France Лекция 2

Спиновая физика: 1) Изучение равновесного состояния спинов 2) Возмущение равновесного состояния 3) Измерение отклика на это возмущение

Magnetic resonances Nuclear magnetic resonance (Rabi, 1938)‏ Electron spin resonance (Zavoisky, 1944)‏ Atomic physics Polarized luminescence (Wood, 1923)‏ Depolarization by magnetic field (Wood, 1923; Hanle, 1924)‏ Optical pumping (Kastler, Brossel, 1950)‏ Историческая справка

R.W. Wood and A. Ellett “Polarized resonance radiation in weak magnetic fields” Phys. Rev. 24, 243 (1924)‏ Robert Wood ( )‏ W. Hanle “Über magnetische Beeinflussung der Polarisation der Resonanz-Fluoreszenz” Z. Physik 30, 93 (1924)‏ Wilhelm Hanle ( ) Историческая справка

Alfred Kastler ( )‏ Jean Brossel ( )‏ J. Brossel, A. Kastler, “La détéction de la résonance magnétique des niveaux excités – l’effet de depolarization des radiations de résonance optique et de fluorescence” Compt. Rend. Hebd. Acad. Sci. 229, 1213 (1949)‏ Историческая справка

Isidor Rabi ( )‏ Discovery of the Nuclear Magnetic Resonance Evgeny Zavoisky ( ) Discovery of the Electron Spin Resonance Историческая справка

Спиновый резонанс B S Магнитный момент прецессирует вокруг магнитного поля с частотой Ω = 2μB/ħ Уравнение: +μB‒ μB+μB‒ μB

Спиновый резонанс Теперь включим переменное магнитное поле B 1 (t) перпендикулярное B и вращающееся с частотой ω = Ω (резонанс) Перейдем во вращающуюся с частотой ω систему координат. В этой системе останется только постоянное поле B 1. Магнитный момент прецессирует вокруг магнитного поля B 1 с частотой Ω 1 = 2μB 1 /ħ B S B1B1 Если вначале спин направлен вдоль B, то через время π / Ω 1 спин перевернется (180° импульс)

Уравнение Блоха S 0 - равновесное значение спина T 2 - поперечное время релаксации T 1 - продольное время релаксации Felix Bloch ( )‏

Spin echo

Human brain scanned by NMR Applications come unexpected!

First experiment on optical spin orientation of free electrons in a semiconductor‏ Georges Lampel 2008

Optical spin orientation and detection Band structure of GaAs near Γ point Optical transitions between atomic levels with j = 3/2 and j =1/2 under absorption of a right circularly polarized photon The ratio of the two probabilities is 3:1 l = 0 l = 1

Optical spin orientation and detection Excitation by circularly polarized light Detection of the circular polarization of luminescence, P For recombination with non-polarized holes P = S, the average spin per electron 1+  /  s P0P0 P = where  is the electron lifetime,  s is the spin relaxation time GaAs

The Hanle effect depolarization of luminescence in magnetic field‏ ”It was then observed that the apparatus was oriented in a different direction from that which obtained in earlier work, and on turning the table on which everything was mounted through ninety degrees, bringing the observation direction East and West, we at once obtained a much higher value of the polarization” R. Wood and A. Ellett (1924)‏ P (B) = P (0) 1+ ( Ω Τ) 2 Ω is the spin precession frequency in magnetic field, 1/ Τ = 1/  + 1/  s is the effective spin lifetime (The Hanle curve)‏

Spin relaxation

Mistification of spin relaxation: “The qubit (spin) gets entangled with the environment…” “The environment is constantly trying to look at the state of a qubit, a process called decoherence” Spin relaxation is a result of the action of fluctuating in time magnetic fields In most cases, these are not real magnetic fields, but rather “effective” magnetic fields originating from the spin-orbit, exchange, or hyperfine interactions Two parameters of a randomly fluctuating magnetic field: a) Its amplitude, or the average spin precession frequency, ω, in this random field b) Its correlation time  c, i.e. the time during which the field may be roughly considered as constant

Spin relaxation IMPORTANT PARAMETER What happens, depends on the value of the dimensionless parameter ω  c which is the typical angle of spin precession during the correlation time

TWO LIMITING CASES: a)  c << 1 (most frequent case)‏ The spin vector experiences a slow angular diffusion b)  c >> 1 This means that during the correlation time the spin will make many rotations around the direction of the magnetic field Spin relaxation

a)  c << 1 Number of uncorrelated random steps during t : t/  c Squared precession angle for each step : (  c ) 2 Total squared angle after time t : (  c ) 2 t/  c Spin relaxation time may be defined as the time at which this angle becomes of the order of 1: 1 /  s ~  2  c This is essentially a classical formula ! Spin relaxation Random walk of the spin vector

b)  c >> 1 During time ~ 1 /  the spin projection transverse to the random magnetic field is (on the average) completely destroyed, while its projection along the direction of the field is conserved After time  c the magnetic field changes its direction, and the initial spin polarization will disappear. Thus for this case  s ~  c, i.e. the spin relaxation time is on the order of the correlation time This consideration is quite general It applies to any mechanism of spin relaxation! Spin relaxation

Введение в спиновую физику М. И. Дьяконов Université Montpellier II, France Лекция 3 The electron-nuclear spin system Spin-related transport phenomena, spin Hall effect Жить на вершине голой, Писать простые сонеты, И брать у людей из дола Хлеб, вино, и котлеты. Саша Черный

Electron spin system Nuclear spin system Effective nuclear magnetic field Dynamic nuclear polarization The electron-nuclear spin system Electron spin orientation Electron spin detection NMR

The physics is governed by three basic interactions: a)Hyperfine interaction between electron and nuclear spins Fermi contact interaction: V = AIS (for an electron in s-state)‏ I - nuclear spin, S - electron spin Consequences: (i) Nuclear spin relaxation (electron spin system in equilibrium)‏ (ii) Dynamic nuclear polarization (electron spin system out of equilibrium)‏ Time scale: from seconds to minutes, to hours (iii) Effective nuclear magnetic field acting on electron spins The field of 100% polarized nuclei in GaAs would be about 6 Tesla ! The electron-nuclear spin system

b) Dipole-dipole interaction between nuclear spins. Can be characterized by the local magnetic field, B L ~ several Gauss and a precession period of a nuclear spin in this field,  N ~10 -4 s This interaction leads to nuclear spin diffusion (Bloembergen)‏ Diffusion coefficient: D N ~ a 2 /  N ~ cm 2 /s So, spin diffusion on a distance of 100 Å takes ~ 1s and several hours for a distance of 1 μ m The electron-nuclear spin system c) Zeeman interaction of electron and nuclear spins with the external magnetic field  N /  B ~ 10 -3

Nuclear spin temperature The time  N ~10 ‒ 4 s (also called T 2 ) gives a characteristic time scale for the nuclear spin system, which is much shorter than the spin-lattice relaxation time T 1 The average nuclear spin is given by the thermodynamical formula: I av = I+1 3 BB kΘkΘ always along B ! The electron-nuclear spin system Calculation of the spin temperature (Dyakonov, Perel, 1974) gives : B N = B 0 B(BS)‏ B 2 +B L 2 During time ~ τ N thermal equilibrium within this system is established, with a nuclear spin temperature Θ, which may be very different from the crystal temperature, for example, something like 10 ‒ 6 K

The oblique Hanle effect (manifestation of nuclear magnetic field in the oblique Hanle effect)‏ The nuclei always get polarized so that I ~ (SB)B Hence B must be neither parallel, nor perpendicular to S ! Dyakonov, Perel, Ekimov, Safarov (1974)

The electron-nuclear spin system (Nuclear spin Zoo)‏ V.A. Novikov and V.G. Fleisher, Sov. Phys. JETP, 44, 410 (1976)‏ Circular polarization of luminescence in AlGaAs in perpendicular magnetic field for different field orientation with respect to crystal axes

The electron-nuclear spin system (Nuclear spin Zoo)‏ Self-sustained oscillations of the circular polarization of the luminescence in AlGaAs appearing after application of transverse magnetic field B=60 G for different angles with [110] V.A. Novikov and V.G. Fleisher, Sov. Phys. JETP, 47, 539 (1978)‏

The electron-nuclear spin system (Nuclear spin Zoo)‏ Oblique Hanle effect in GaAs θ = 83 o θ = 87 o θ = 90 o B.P. Zakharchenya, V.G. Fleisher et al, Sov. Phys. Solid State 23, 810 (1981)‏

Spin-related transport phenomena, spin Hall effect

Anomalous Hall effect 1879 Hall Effect 1881 Anomalous Hall Effect in ferromagnets: Edwin Hall Joaquin Mazdak Luttinger Robert Karplus Explanation (spin-orbit interaction!): J. Smit (1951,1955) R. Karplus, J.M. Luttinger (1954)

Current-induced spin accumulation (Spin Hall Effect) Leningrad 1976

j Current-induced spin accumulation

Spin and charge currents x z q xz - z component of spin is flowing in the x direction Generally : q ij Here the spin current is accompanied by a charge current q x ( electric current j = – q/e ) x z Now there is a pure spin current q xz The charge current is zero: q=0

Coupling of spin and charge currents Charge flow density: q = - j/e ( j – electric current density ) Spin polarization flow density tensor : q ij (flow of the j-component of spin in direction i ) Spin polarization density: P = 2S, where S is the spin density vector. ) Without taking account of spin-orbit interaction: – normal expression with drift and diffusion – similar expression (spins carried by drift and diffusion) Here  is a dimensionless coupling parameter proportional to the spin-orbit interaction  ijk is the unit antisymmetric tensor Spin-orbit interaction couples the two currents: q i = q i (0) +  ε ijk q ij (0) q ij = q ij (0) –  ε ijk q k (0) M.I. Dyakonov, Phys. Rev. Lett. 99, (2007)

Phenomenological equations (Dyakonov, Perel, 1971) Anomalous Hall Effect Inverse Spin Hall Effect Spin Hall Effect Diffusive counterpart of SHE  = ,  =  D.

First observation of the Inverse Spin Hall Effect ( j ~ curl P ) Circularly polarized light creates spin polarization P, however curl P = 0 By applying a magnetic field parallel to the surface, one creates the y component of P. This makes a non-zero curl P and hence an electric current in the x direction Proposal: N.S. Averkiev and M.I. Dyakonov, Sov. Phys. Semicond. 17, 393 (1983) Experiment: A.A. Bakun, B.P. Zakharchenya, A.A. Rogachev, M.N. Tkachuk, and V.G. Fleisher, Sov. Phys. JETP Lett. 40, 1293 (1984)

First observations of the Spin Hall effect Y.K. Kato, R.C. Myers, A.C. Gossard, and D.D. Awschalom, Science 306, 1910 (2004) 33-Year Hunt for Proof of Spin Current Now Over Spin Hall Effect Observed !

Experiment Two-dimensional gas of holes in AlGaAs/GaAs heterostructure (optical registration) J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, PRL, 94, (2005) Polarization reversal when the current direction is changed Polarization at opposite edges of the sample First observations of the Spin Hall effect

Spintronics? Spintronics mantras: “Spintronics is one of the most promising new technologies, where the spin degrees of freedom of electrons in semiconductors are manipulated and utilized for functions such as memory, operation, and communication” “The electron spin, which has been largely ignored in a charge-based electronics, has now become the focus of research due to the emerging field of spintronics” (repeated with small variations in ~10 4 publications by ~ 10 3 authors) “.. spin-based electronics, where it is not the electron charge but the electron spin that carries information, and this offers opportunities for a new generation of devices combining standard microelectronics with spin-dependent effects...” “Spintronics: a spin-based electronics vision of the future”, S.A. Wolf, D.D. Awschalom, et al, Science 294, 1488 (2001)

Datta-Das spin transistor the wonderful spintronic device SD G No advantages compared to the normal Field Effect Transistor! But many severe drawbacks … S. Datta and B. Das, Electronic analog of the electro-optic modulator Appl. Phys. Lett. 56, 665 (1990)‏ citations channel Ferromagnetic contacts gate source drain

Robert Wood ( )‏ Wilhelm Hanle ( ) Alfred Kastler ( )‏ Jean Brossel ( )‏ The founding fathers Isidor Rabi ( )‏ Evgeny Zavoisky ( ) Nicolaas Bloembergen (1920)‏ Felix Bloch ( )‏