Pentium III Memory.

Slides:



Advertisements
Similar presentations
Virtual Memory October 25, 2006 Topics Address spaces Motivations for virtual memory Address translation Accelerating translation with TLBs class16.ppt.
Advertisements

Carnegie Mellon 1 Virtual Memory: Concepts : Introduction to Computer Systems 15 th Lecture, Oct. 14, 2010 Instructors: Randy Bryant and Dave O’Hallaron.
Instructors: Randy Bryant and Dave O’Hallaron
P6/Linux Memory System Oct. 31, 2002
Memory System Case Studies Oct. 28, 2004 Topics P6 address translation x86-64 extensions Linux memory management Linux page fault handling Memory mapping.
Virtual Memory October 29, 2007 Topics Address spaces Motivations for virtual memory Address translation Accelerating translation with TLBs class16.ppt.
– 1 – P6 (PentiumPro,II,III,Celeron) memory system bus interface unit DRAM Memory bus instruction fetch unit L1 i-cache L2 cache cache bus L1 d-cache inst.
1 Virtual Memory: Systems Level Andrew Case Slides adapted from jinyang Li, Randy Bryant and Dave O’Hallaron.
Address Translation Mechanism of 80386
Virtual Memory: Concepts
Carnegie Mellon /18-243: Introduction to Computer Systems Instructors: Bill Nace and Gregory Kesden (c) All Rights Reserved. All work.
1 Seoul National University Virtual Memory: Systems.
Computer Structure 2012 – VM 1 Computer Structure X86 Virtual Memory and TLB Franck Sala Slides from Lihu and Adi’s Lecture.
1 Virtual Memory. 2 Outline Pentium/Linux Memory System Core i7 Suggested reading: 9.6, 9.7.
Computer Architecture 2011 – VM x86 1 Computer Architecture Virtual Memory (VM) – x86 By Dan Tsafrir, 30/5/2011 Presentation based on slides by Lihu Rappoport.
1 Virtual Memory: Concepts Andrew Case Slides adapted from Jinyang Li, Randy Bryant and Dave O’Hallaron.
Computer Structure 2012 – VM 1 Computer Structure X86 Virtual Memory and TLB Franck Sala Slides from Lihu and Adi’s Lecture.
Carnegie Mellon 1 Virtual Memory: Concepts Instructor: Rabi Mahapatra (TAMU) Slides: Randy Bryant and Dave O’Hallaron (CMU)
Virtual Memory. Virtual Memory: Topics Why virtual memory? Virtual to physical address translation Page Table Translation Lookaside Buffer (TLB)
Virtual Memory March 23, 2000 Topics Motivations for VM Address translation Accelerating address translation with TLBs Pentium II/III memory system
Carnegie Mellon Introduction to Computer Systems /18-243, spring th Lecture, Mar. 24 th Instructors: Gregory Kesden and Markus Püschel.
Memory System Case Studies Oct. 31, 2007 Topics P6 address translation x86-64 extensions Linux memory management Linux page fault handling Memory mapping.
Virtual Memory Additional Slides Slide Source: Topics Address translation Accelerating translation with TLBs class12.ppt.
Instructors: Majd Sakr and Khaled Harras
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Virtual Memory: Concepts Slides adapted from Bryant.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Virtual Memory: Concepts CENG331 - Computer Organization.
Virtual Memory Topics Motivations for VM Address translation Accelerating translation with TLBs CS 105 “Tour of the Black Holes of Computing!”
CS 105 “Tour of the Black Holes of Computing!”
Carnegie Mellon 1 Virtual Memory: Systems / : Introduction to Computer Systems 17 th Lecture, Oct. 27, 2011 Instructors: Dave O’Hallaron,
1 Virtual Memory. 2 Outline Multilevel page tables Different points of view Pentium/Linux Memory System Memory Mapping Suggested reading: 10.6, 10.3,
CSE 153 Design of Operating Systems Winter 2015 Lecture 11: Paging/Virtual Memory Some slides modified from originals by Dave O’hallaron.
P6/Linux Memory System Topics P6 address translation Linux memory management Linux page fault handling memory mapping vm2.ppt CS 105 “Tour of the Black.
1 Virtual Memory. 2 Outline Multilevel page tables Different points of view Pentium/Linux Memory System Memory Mapping Suggested reading: 10.6, 10.3,
Memory System Case Studies Mar. 20, 2008 Topics P6 address translation x86-64 extensions Linux memory management Linux page fault handling Memory mapping.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Virtual Memory: Systems CSCE312: Computer Organization.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Virtual Memory: Systems CENG331 - Computer Organization.
Carnegie Mellon 1 Virtual Memory: Systems / : Introduction to Computer Systems 17 th Lecture, Mar. 19, 2015 Instructors: Seth Copen Goldstein,
Virtual Memory: Systems
1 Virtual Memory. 2 Outline Case analysis –Pentium/Linux Memory System –Core i7 Suggested reading: 9.7.
Memory System Case Studies Mar. 20, 2008 Topics P6 address translation x86-64 extensions Linux memory management Linux page fault handling Memory mapping.
CS 105 “Tour of the Black Holes of Computing!”
Networks and Operating Systems: Exercise Session 3
Virtual Memory Samira Khan Apr 27, 2017.
CS 105 “Tour of the Black Holes of Computing!”
Section 9: Virtual Memory (VM)
Virtual Memory: Systems
Section 9: Virtual Memory (VM)
Today How was the midterm review? Lab4 due today.
CSE 153 Design of Operating Systems Winter 2018
Virtual Memory: Systems /18-213/14-513/15-513: Introduction to Computer Systems 18th Lecture, October 25, 2018.
CS 105 “Tour of the Black Holes of Computing!”
Virtual Memory II CSE 351 Autumn 2016
Virtual Memory: Concepts /18-213/14-513/15-513: Introduction to Computer Systems 17th Lecture, October 23, 2018.
Virtual Memory: Systems
Virtual Memory: Systems
Virtual Memory S04, Recitation, Section A
Memory System Case Studies Oct. 13, 2008
Pentium/Linux Memory System
P6 (PentiumPro,II,III,Celeron) memory system
Instructors: Majd Sakr and Khaled Harras
Pentium III / Linux Memory System April 4, 2000
Instructor: Phil Gibbons
Virtual Memory II CSE 351 Winter 2018
CS 105 “Tour of the Black Holes of Computing!”
CS 105 “Tour of the Black Holes of Computing!”
CSE 153 Design of Operating Systems Winter 2019
CS 105 “Tour of the Black Holes of Computing!”
CS703 - Advanced Operating Systems
Instructor: Phil Gibbons
P6 (PentiumPro,II,III,Celeron) memory system
Presentation transcript:

Pentium III Memory

Pentium III 2-level Page Table Structure Page directory 1024 4-byte page directory entries (PDEs) that point to page tables one page directory per process. page directory must be in memory when its process is running always pointed to by PDBR Page tables: 1024 4-byte page table entries (PTEs) that point to pages. page tables can be paged in and out. 1024 page tables 1024 PTEs page directory ... 1024 PDEs 1024 PTEs ... 1024 PTEs

Pentium III Page Directory Entry (PDE) 31 12 11 9 8 7 6 5 4 3 2 1 Page table physical base addr Avail G PS A CD WT U/S R/W P=1 Page table physical base address: 20 most significant bits of physical page table address (forces page tables to be 4KB aligned) Avail: available for system programmers G: global page (don’t evict from TLB on task switch) PS: page size 4K (0) or 4M (1) A: accessed (set by MMU on reads and writes, cleared by software) CD: cache disabled (1) or enabled (0) WT: write-through or write-back cache policy for this page table U/S: user or supervisor mode access R/W: read-only or read-write access P: page table is present in memory (1) or not (0) 31 1 Available for OS (page table location in secondary storage) P=0

Pentium III Page Table Entry (PTE) 31 12 11 9 8 7 6 5 4 3 2 1 Page physical base address Avail G D A CD WT U/S R/W P=1 Page base address: 20 most significant bits of physical page address (forces pages to be 4 KB aligned) Avail: available for system programmers G: global page (don’t evict from TLB on task switch) D: dirty (set by MMU on writes) A: accessed (set by MMU on reads and writes) CD: cache disabled or enabled WT: write-through or write-back cache policy for this page U/S: user/supervisor R/W: read/write P: page is present in physical memory (1) or not (0) 31 1 Available for OS (page location in secondary storage) P=0

Pentium III TLB TLB entry (not all documented, so this is speculative): V: indicates a valid (1) or invalid (0) TLB entry PD: is this entry a PDE (1) or a PTE (0)? tag: disambiguates entries cached in the same set PDE/PTE: page directory or page table entry Structure of the data TLB: 16 sets, 4 entries/set PDE/PTE Tag PD V 1 16 32 entry ... set 0 set 1 set 2 set 15

Overview of P-III Address Translation CPU 32 L2 and DRAM result 20 12 virtual address (VA) VPN VPO L1 miss L1 hit 16 4 TLBT TLBI L1 (128 sets, 4 lines/set) TLB hit TLB miss ... ... 10 10 TLB (16 sets, 4 entries/set) VPN1 VPN2 20 12 20 7 5 PPN PPO CT CI CO physical address (PA) PDE PTE Page tables PDBR

Abbreviations Symbols: Components of the virtual address (VA) TLBI: TLB index TLBT: TLB tag VPO: virtual page offset VPN: virtual page number Components of the physical address (PA) PPO: physical page offset (same as VPO) PPN: physical page number CO: byte offset within cache line CI: cache index CT: cache tag

How Pentium III Page Tables Map Virtual Addresses to Physical Ones 10 10 12 VPN1 VPN2 VPO Virtual address word offset into page directory word offset into page table word offset into physical and virtual page page directory page table physical address of page base (if P=1) PTE PDE PDBR physical address of page table base (if P=1) physical address of page directory 20 12 PPN PPO Physical address

Pentium III TLB translation CPU 32 L2 andDRAM result 20 12 virtual address (VA) VPN VPO L1 miss L1 hit 16 4 TLBT TLBI L1 (128 sets, 4 lines/set) TLB hit TLB miss ... ... 10 10 TLB (16 sets, 4 entries/set) VPN1 VPN2 20 12 20 7 5 PPN PPO CT CI CO physical address (PA) PDE PTE Page tables PDBR

Translating with the Pentium III TLB 1. Partition VPN into TLBT and TLBI. 2. Is the PTE for VPN cached in set TLBI? 3. Yes: then build physical address. 4. No: then read PTE (and PDE if not cached) from memory and build physical address. CPU virtual address 20 12 VPN VPO 16 4 TLBT TLBI 1 2 TLB hit TLB miss PDE PTE 3 ... 20 12 PPN PPO physical address page table translation 4

Pentium III Page Table Translation CPU 32 L2 andDRAM result 20 12 virtual address (VA) VPN VPO L1 miss L1 hit 16 4 TLBT TLBI L1 (128 sets, 4 lines/set) TLB hit TLB miss ... ... 10 10 TLB (16 sets, 4 entries/set) VPN1 VPN2 20 12 20 7 5 PPN PPO CT CI CO physical address (PA) PDE PTE Page tables PDBR

Translating with the P-III Page Tables page table and page present. MMU Action: MMU build physical address and fetch data word. OS action none 20 12 VPN VPO 20 12 VPN1 VPN2 PPN PPO Mem PDE p=1 PTE p=1 data PDBR Page directory Page table Data page Disk

Translating with the P-III Page Tables page table present but page missing. MMU Action: page fault exception handler receives the following args: VA that caused fault fault caused by non-present page or page-level protection violation read/write user/supervisor 20 12 VPN VPO VPN1 VPN2 Mem PDE p=1 PTE p=0 PDBR Page directory Page table data Disk Data page

Translating with the P-III Page Tables OS Action: Check for a legal virtual address. Read PTE through PDE. Find free physical page (paging out current page if necessary) Read the virtual page from disk and copy to physical page Restart the faulting instruction when this process is next scheduled on the CPU 20 12 VPN VPO 20 12 VPN1 VPN2 PPN PPO Mem PDE p=1 PTE p=1 data PDBR Page directory Page table Data page Disk

Pentium III Memory System 32 bit address space 4 KB pagesize L1, L2, and TLBs 4-way set associative inst TLB 32 entries 8 sets data TLB 64 entries 16 sets L1 i-cache and d-cache 16 KB 32 B linesize 128 sets L2 cache unified 128 KB -- 2 MB DRAM external system bus (e.g. PCI) L2 cache cache bus bus interface unit inst TLB data TLB instruction fetch unit L1 i-cache L1 d-cache processor package