Journées Scientifiques du GNR MOMAS, 23-25 novembre 2009DM2S/SFME/LSET 1 MPCube Development Ph. Montarnal, Th. Abballe, F. Caro, E. Laucoin, DEN Saclay.

Slides:



Advertisements
Similar presentations
School of something FACULTY OF OTHER School of Computing An Adaptive Numerical Method for Multi- Scale Problems Arising in Phase-field Modelling Peter.
Advertisements

1 A parallel software for a saltwater intrusion problem E. Canot IRISA/CNRS J. Erhel IRISA/INRIA Rennes C. de Dieuleveult IRISA/INRIA Rennes.
A parallel scientific software for heterogeneous hydrogeoloy
Numerical simulation of solute transport in heterogeneous porous media A. Beaudoin, J.-R. de Dreuzy, J. Erhel Workshop High Performance Computing at LAMSIN.
Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 1/24 Finite volumes and finite elements for the numerical simulation.
1 Modal methods for 3D heterogeneous neutronics core calculations using the mixed dual solver MINOS. Application to complex geometries and parallel processing.
Sparse linear solvers applied to parallel simulations of underground flow in porous and fractured media A. Beaudoin 1, J.R. De Dreuzy 2, J. Erhel 1 and.
Multidisciplinary Computation and Numerical Simulation V. Selmin.
Emerging Technologies for FETCH2 Jeff Gomes Applied Modelling and Computation Group (AMCG) Severe Accident Subproject Meeting 14/11/2011.
1 Numerical Simulation for Flow in 3D Highly Heterogeneous Fractured Media H. Mustapha J. Erhel J.R. De Dreuzy H. Mustapha INRIA, SIAM Juin 2005.
EULER Code for Helicopter Rotors EROS - European Rotorcraft Software Romuald Morvant March 2001.
1 A new iterative technique for solving nonlinear coupled equations arising from nuclear waste transport processes H. HOTEIT 1,2, Ph. ACKERER 2, R. MOSE.
1 Modélisation et simulation appliquées au suivi de pollution des nappes phréatiques Jocelyne Erhel Équipe Sage, INRIA Rennes Mesures, Modélisation et.
A modified Lagrangian-volumes method to simulate nonlinearly and kinetically adsorbing solute transport in heterogeneous media J.-R. de Dreuzy, Ph. Davy,
High performance flow simulation in discrete fracture networks and heterogeneous porous media Jocelyne Erhel INRIA Rennes Jean-Raynald de Dreuzy Geosciences.
Dual Mesh Method in Upscaling Pascal Audigane and Martin Blunt Imperial College London SPE Reservoir Simulation Symposium, Houston, 3-5 February 2003.
Session: Computational Wave Propagation: Basic Theory Igel H., Fichtner A., Käser M., Virieux J., Seriani G., Capdeville Y., Moczo P.  The finite-difference.
Coupling Continuum Model and Smoothed Particle Hydrodynamics Methods for Reactive Transport Yilin Fang, Timothy D Scheibe and Alexandre M Tartakovsky Pacific.
Extending the capability of TOUGHREACT simulator using parallel computing Application to environmental problems.
1 A component mode synthesis method for 3D cell by cell calculation using the mixed dual finite element solver MINOS P. Guérin, A.M. Baudron, J.J. Lautard.
An efficient parallel particle tracker For advection-diffusion simulations In heterogeneous porous media Euro-Par 2007 IRISA - Rennes August 2007.
1 Internal Seminar, November 14 th Effects of non conformal mesh on LES S. Rolfo The University of Manchester, M60 1QD, UK School of Mechanical,
Multi-Scale Finite-Volume (MSFV) method for elliptic problems Subsurface flow simulation Mark van Kraaij, CASA Seminar Wednesday 13 April 2005.
Network and Grid Computing –Modeling, Algorithms, and Software Mo Mu Joint work with Xiao Hong Zhu, Falcon Siu.
A TWO-FLUID NUMERICAL MODEL OF THE LIMPET OWC CG Mingham, L Qian, DM Causon and DM Ingram Centre for Mathematical Modelling and Flow Analysis Manchester.
Modeling and simulation of deformable porous media Jan Martin Nordbotten Department of Mathematics, University of Bergen, Norway Department of Civil and.
Direct and iterative sparse linear solvers applied to groundwater flow simulations Matrix Analysis and Applications October 2007.
1 Parallel Simulations of Underground Flow in Porous and Fractured Media H. Mustapha 1,2, A. Beaudoin 1, J. Erhel 1 and J.R. De Dreuzy IRISA – INRIA.
1 CFD Analysis Process. 2 1.Formulate the Flow Problem 2.Model the Geometry 3.Model the Flow (Computational) Domain 4.Generate the Grid 5.Specify the.
DYNAS Workshop 6,7,8/12/04 Mixed Hybrid Finite Element and Iterative Methods for Flow in Porous Media E. Mouche, C. Le Potier, P. Maugis, L.V. Benet. Commissariat.
Wavelets Series Used to Solve Dynamic Optimization Problems Lizandro S. Santos, Argimiro R. Secchi, Evaristo. C. Biscaia Jr. Programa de Engenharia Química/COPPE,
Hybrid WENO-FD and RKDG Method for Hyperbolic Conservation Laws
Shuyu Sun Earth Science and Engineering program KAUST Presented at the 2009 annual UTAM meeting, 2:05-2:40pm January 7, 2010 at the Sutton Building, University.
ParCFD Parallel computation of pollutant dispersion in industrial sites Julien Montagnier Marc Buffat David Guibert.
Discontinuous Galerkin Methods and Strand Mesh Generation
Discontinuous Galerkin Methods Li, Yang FerienAkademie 2008.
Materials Process Design and Control Laboratory MULTISCALE MODELING OF ALLOY SOLIDIFICATION LIJIAN TAN NICHOLAS ZABARAS Date: 24 July 2007 Sibley School.
1 The reactive transport benchmark J. Carrayrou Institut de Mécanique des Fluides et des Solides, Laboratoire d’Hydrologie et de Géochimie de Strasbourg,
On the Use of Sparse Direct Solver in a Projection Method for Generalized Eigenvalue Problems Using Numerical Integration Takamitsu Watanabe and Yusaku.
Computational Aspects of Multi-scale Modeling Ahmed Sameh, Ananth Grama Computing Research Institute Purdue University.
1 1 What does Performance Across the Software Stack mean?  High level view: Providing performance for physics simulations meaningful to applications 
© IFP Controlled CO 2 | Diversified fuels | Fuel-efficient vehicles | Clean refining | Extended reserves Écrire ici dans le masque le nom de votre Direction.
Parallel Solution of the Poisson Problem Using MPI
Nuclear Waste Disposal Modelling : uses and needs at EDF R&D F. Dumortier (LNHE), M. Eddi (MFEE), S. Granet (AMA)
Domain Decomposition in High-Level Parallelizaton of PDE codes Xing Cai University of Oslo.
Cracow Grid Workshop, November 5-6, 2001 Concepts for implementing adaptive finite element codes for grid computing Krzysztof Banaś, Joanna Płażek Cracow.
A Dirichlet-to-Neumann (DtN)Multigrid Algorithm for Locally Conservative Methods Sandia National Laboratories is a multi program laboratory managed and.
Controlled CO 2 | Diversified Fuels | Fuel-efficient Vehicles | Clean Refining | Extended Reserves © IFP IEA Collaborative Project on EOR - 30th Annual.
High performance computing for Darcy compositional single phase fluid flow simulations L.Agélas, I.Faille, S.Wolf, S.Réquena Institut Français du Pétrole.
FALL 2015 Esra Sorgüven Öner
1 IV European Conference of Computational Mechanics Hrvoje Gotovac, Veljko Srzić, Tonći Radelja, Vedrana Kozulić Hrvoje Gotovac, Veljko Srzić, Tonći Radelja,
CO 2 maîtrisé | Carburants diversifiés | Véhicules économes | Raffinage propre | Réserves prolongées © IFP Écrire ici dans le masque le nom de votre Direction.
HYDROGRID J. Erhel – October 2004 Components and grids  Deployment of components  CORBA model  Parallel components with GridCCM Homogeneous cluster.
F. Fairag, H Tawfiq and M. Al-Shahrani Department of Math & Stat Department of Mathematics and Statistics, KFUPM. Nov 6, 2013 Preconditioning Technique.
A Parallel Hierarchical Solver for the Poisson Equation Seung Lee Deparment of Mechanical Engineering
Adaptive grid refinement. Adaptivity in Diffpack Error estimatorError estimator Adaptive refinementAdaptive refinement A hierarchy of unstructured gridsA.
Lecture Objectives: - Numerics. Finite Volume Method - Conservation of  for the finite volume w e w e l h n s P E W xx xx xx - Finite volume.
Materials Process Design and Control Laboratory MULTISCALE COMPUTATIONAL MODELING OF ALLOY SOLIDIFICATION PROCESSES Materials Process Design and Control.
Hybrid Parallel Implementation of The DG Method Advanced Computing Department/ CAAM 03/03/2016 N. Chaabane, B. Riviere, H. Calandra, M. Sekachev, S. Hamlaoui.
Hui Liu University of Calgary
Xing Cai University of Oslo
Department of Mathematics
A Brachytherapy Treatment Planning Software Based on Monte Carlo Simulations and Artificial Neural Network Algorithm Amir Moghadam.
A robust preconditioner for the conjugate gradient method
GENERAL VIEW OF KRATOS MULTIPHYSICS
ArcEOR A posteriori error estimate tools to enhance the performance of
Objective Numerical methods Finite volume.
Parallelizing Unstructured FEM Computation
Ph.D. Thesis Numerical Solution of PDEs and Their Object-oriented Parallel Implementations Xing Cai October 26, 1998.
CASA Day 9 May, 2006.
Presentation transcript:

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 1 MPCube Development Ph. Montarnal, Th. Abballe, F. Caro, E. Laucoin, DEN Saclay DM2S/SFME/LSET

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 2 Outline  Background  Development Strategy  Scalar diffusion : validation and cement paste application  Two-phase flow porous media module  Current developments : Multiscale FV/FE, adaptive mesh refinement and a posteriori error  Link with Momas activities  Conclusion and prospects

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 3 Background  Simulation of flow and reactive transport Material degradation (cement, glass, iron …) Phenomenological simulation and performance study of nuclear waste storage Industrial and nuclear site pollution

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 4 Background  First work done at CEA Development in Castem code Integration in Alliances plat-form (co-developped with ANDRA & EDF, using Salome) Simulation with about elements meshes  New step after 2006 : need to increase the accuracy of the computation in order to quantity the uncertainties  Increase the complexity of the geometry  Take into account multi-phase flow : hydrogen migration due to corrosion, description of the saturation phase  Heterogeneous materials : Identification of fine scale behaviour in order to determine properties at the macro-scale  Material degradation : corrosion, glass, cement  sharp coupling  Adaptive mesh refinement and a posteriori error  Development of a new code in a HPC context

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 5 Development strategy  Objectives Development of numerical schemes appropriate for  multi-physics problems : hydraulic, transport, chemistry transport, two-phase flow  discretisation schemes for scalar equation and systems of convection-diffusion  easy to couple (cell centered, modular architectures)  Porous media characteristics : heterogeneous and anisotropic  implicit time schemes, unstructured meshes, adapted discretisation schemes An adapted software  for department clusters and massively parallel clusters of data processing centres  for problem evolution (new model implementation has to be easy)  for parallelism performance evolution  Choices Use an existing parallel frame-work developed at CEA for TrioU and OVAP codes  Memory management and parallel data entry; Distributed operations on vectors and matrices;  Ability to handle unstructured meshes; Link with partitioning tools;  Link with standard libraries (PETSC, HYPRE and SPARSKIT) for the resolution of sparse linear systems;  Possibilities of integration in the Salome platform (Med format)

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 6 Development strategy Develop a generic framework for non-linear convection- diffusion equation able to be coupled with chemistry term Use the numerical schemes which were validated previously in Castem : cell centered FV schemes suited to heterogoneous and anisotropic media (VF Diam, VF SYM, VF MON) Explore complementary ways for performance improvement :  Adaptive Mesh Refinement and a priori error in the context of HPC  Other parallelism paradigm (domain decomposition, multiscale schemes)  Linear solver improvement

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 7 Scalar diffusion  Validation on analytical solution  Cement paste application case Stationary and diffusive problem on a cementitious material REV Diffusion coefficient D isotropic and heterogeneous, 4 mediums(D in [10 −19, 10 −11 ] m 2.s −1 ) Geometry :  Cube of 603 μm3  21 spheres for medium 1, 20 spheres for medium 2 and 6 spheres for medium 3

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 8 Scalar diffusion Number of iteration, CPU time evolution for the linear system resolution and performance depending on the choice of solver and preconditioner Numerical scheme : FV Symetric Number of cells ≃

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 9 Two-phase flow porous media module  Physical model :  Mathematical model :  where u and v are the choosen unknows and M and A matrix non linearly dependent of unknows  Remarks : Different variants of the model can be addressed by this mathematical frame-work Choice of unknowns is difficult and depends of the problem (for example we can choose liquid saturation–gas pressure, gas saturation–gas pressure, capillarity pressure–gas pressure, liquid pressure–gas pressure, and more... )

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 10 Two-phase flow porous media module  Implicit Euler Scheme for time discretisation  Cell-center FV discretisation  Fixed point method for the global non linear system resolution with unknows u n+1 and v n+1

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 11 Two-phase flow porous media module  Validation Homogenous unstationary problem with and without dissolution Heterogeneous and homogenous stationary problem without dissolution Second order for space convergence and first order time convergence Momas test case with nonequilibrium initial conditions (liquid and gas pressure, gas saturation evolution at t=500s) MOMAS test case with nonequilibrium initial conditions (t=500s)Heterogneous test case

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 12 Two-phase flow porous media module  Couplex gaz 1 b Numerical parameters :  Linear solver : BICGSTAB  Preconditioner : SPAI  Threshold 10 −10 for the linear solver and 10 −4 for the non linear solver  Mesh : cells  Number of time steps : 115 (400 years) ( about 230 time steps for the full Couplex Gas benchmark) CPU time over 2 processors ≃ 1 day 1/4 and over 24 processors, 3 hours.

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 13 Numerical Homogeneization : multi-scale FV/FE (TH. Abballe PhD Thesis at CEA with G. Allaire) Coarse layer Finite Elements method Each base function is built from local resolutions on the fine layer Fine layer Macro-element K and cell (in black) by increasing K with a fraction  of its neighbours. Finite Volumes method Computations on coarse cells are independent Allows to capture low-scale details  Local resolutions can be run in parallel.  Outer-cell parallelism : we process the work on each cell independently for each other  Inner-cell parallelism : parallel solver for the computations on each cell

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 14 Numerical Homogeneization : multi-scale FV/FE coupling (TH. Abballe PhD Thesis at CEA with G. Allaire)  Determination of an homogenized diffusion from the ingoing and outgoing fluxes.  Work on 2D geometry (Python prototype)  Integration in MPCube to handle 3D geometry  Further work Theoretical work to link ρ with the resolution error of the diffusion problem Use of Discontinuous Galerkin methods to solve the coarse problem, instead of a classical Finite Element method 3D geometry with overlaping

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 15 Adaptive mesh refinement and a posteriori error  Objectives Improvement of global accuracy through local mesh adaptation Error control using a posteriori error estimates Integrated approach (no external meshing software)  Constraints Complex physical configurations  HPC is essential ! AMR leads to load imbalance  need for relevant load balancing algorithms Numerical accuracy relies on mesh quality  Geometric adaptation must retain mesh quality  Choosen approach for adaptive mesh refinement Geometric adaptation through regular refinement  Pros : Mesh quality is conserved Algebraic refinement  implementation simplification  Cons : Generates non-conformities

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 16 Adaptive mesh refinement and a posteriori error Development of new FV schemes supporting mesh non-conformities  Extension of existing FV schemes (FV-Diamond, FV-Sym,...)  This is one the objectives of the ANR Project VF-Sitcom. Implementation of dynamic load balancing strategies  Relying on graph partitionning heuristics  Load balance should be ensured for both numerical resolution and geometric adaptation  A posteriori error estimates Work done by A. Ern (ENPC), M. Vhoralik (P6) and P. Omnes (CEA) with PhD students Anh Ha Le and Nancy Chalhoub Objectives  Unstationary problems (diffusion-convection equation)  Non-linearities in unsaturated flow  Coupled error for flow and transport Integration in MPCube  Error estimates for diffusion equation with VF-Diam done in 2008  Further integration will be done after (during?) the PhD thesis

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 17 Link with Momas activities  MPCube can be a way of Momas research integration in industrial tools  It was (will be) the case for Two-phase flow Multiscale EF/VF method A posteriori error estimator Space-time domain decomposition  CEA is also motivated to include highly scalable linear solver (Jaffré-Nataf project)  The development is currently done at CEA but bilateral cooperation on the development can be done

Journées Scientifiques du GNR MOMAS, novembre 2009DM2S/SFME/LSET 18 Conclusion and prospects  MPCube is a code for non-linear convection-diffusion systems in a parallel context First applications was done on diffusion and multi-phase flow Specific functionalities was also developed for multi-scale FV/FE, Adaptive mesh refinement and a posteriori error It’s a way of Momas research integration in industrial tools  Short term prospects Improve the multi-phase model and implementation Test and analysis of computational performance on large clusters  Middle/Long term prospects Space-time domain decomposition in order to discretize the different zones with space and time steps adapted to their physical properties (PhD of P.M. Berthe at CEA with L. Halpern, P13) New parallel preconditioning techniques will be tested Extend to other applications (polymer evolution for example)