On the precision of  scattering from chiral dispersive calculations José R. Peláez Departamento de Física Teórica II. Universidad Complutense de Madrid.

Slides:



Advertisements
Similar presentations
What do we know about the Standard Model? Sally Dawson Lecture 4 TASI, 2006.
Advertisements

1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
1 The and -Z Exchange Corrections to Parity Violating Elastic Scattering 周海清 / 东南大学物理系 based on PRL99,262001(2007) in collaboration with C.W.Kao, S.N.Yang.
Departamento de Física Teórica II. Universidad Complutense de Madrid J. R. Peláez Overview of Light Scalar Resonances 13th Intl. Confernce on Meson-Nucleon.
Integral and derivative dispersion relations, analysis of the forward scattering data J.R. Cudell *, E. Martynov *+, O.V.Selyugin *# * Institut de Physique,
Denis Parganlija (Frankfurt U.) Meson 2010 Workshop, Kraków - Poland Structure of Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450) Denis Parganlija.
L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007.
The role of the tetraquark at nonzero temperature Francesco Giacosa in collaboration with A. Heinz, S. Strüber, D. H. Rischke ITP, Goethe University, Frankfurt.
S-Waves & the extraction of  s Sheldon Stone FPCP 2010, Torino, Italy, May 2010.
R Measurement at charm resonant region Haiming HU BES Collaboration Charm 2007 Cornell University Ithaca, NY. US.
STAR Patricia Fachini 1 Brookhaven National Laboratory Motivation Data Analysis Results Conclusions Resonance Production in Au+Au and p+p Collisions at.
Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) Guan Yeu Chen (Taipei) 18th International Conference on “Few-body Problems.
Scadron70 page 1 Pattern of Light Scalar Mesons a 0 (1450) and K 0 *(1430) on the Lattice Tetraquark Mesonium – Sigma (600) on the Lattice Pattern of Scalar.
Η c and χ c at finite temperature from QCD Sum Rules C. A. Dominguez and Yingwen Zhang University of Cape Town, South Africa M. Loewe Pontificia Universidad.
1 V cb : experimental and theoretical highlights Marina Artuso Syracuse University.
José Antonio Oller Universidad de Murcia. Spain. In collaboration with L. Roca (Murcia), C. Schat (Murcia; CONICET and U.Buenos Aires, Argentina) TexPoint.
1. Introduction 2.     3.  p    n 4.     5.     A   A 6. Discussion 7. Summary Bosen Workshop 2007 Review on.
Theoretical study of e+e-  PP' and the new resonance X(2175) M. Napsuciale Universidad de Guanajuato E. Oset, K. Sasaki, C. A. Vaquera Araujo, S. Gómez.
11 Primakoff Experiments with EIC A. Gasparian NC A&T State University, Greensboro, NC For the PrimEx Collaboration Outline  Physics motivation:  The.
Departamento de Física Teórica II. Universidad Complutense de Madrid J. R. Peláez Review of light scalars Light Meson Dynamics – Institüt für Kernphysik.
What do we know about the Standard Model? Sally Dawson Lecture 2 SLAC Summer Institute.
Departamento de Física Teórica II. Universidad Complutense de Madrid J. R. Peláez Precise dispersive analysis of the f0(600) and f0(980) resonances R.
P Spring 2003 L12Richard Kass The properties of the Z 0 For about ten years the Z 0 was studied in great detail at two accelerator complexes: LEP.
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
Departamento de Física Teórica II. Universidad Complutense de Madrid J. Ruiz de Elvira in collaboration with R. García Martín R. Kaminski Jose R. Peláez.
Strong and Electroweak Matter Helsinki, June. Angel Gómez Nicola Universidad Complutense Madrid.
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
MEM analysis of the QCD sum rule and its Application to the Nucleon spectrum Tokyo Institute of Technology Keisuke Ohtani Collaborators : Philipp Gubler,
Test of fundamental symmetries via the Primakoff effect Test of fundamental symmetries via the Primakoff effect Liping Gan University of North Carolina.
N* Production in α-p and p-p Scattering (Study of the Breathing Mode of the Nucleon) Investigation of the Scalar Structure of baryons (related to strong.
Twist-3 distribution amplitudes of scalar mesons from QCD sum rules Y.M Wang In collaboration with C.D Lu and H. Zou Institute of High Energy Physics,
Electromagnetic N →  (1232) Transition Shin Nan Yang Department of Physic, National Taiwan University  Motivations  Model for  * N →  N DMT (Dubna-Mainz-Taipei)
Nucleon Polarizabilities: Theory and Experiments
Departamento de Física Teórica II. Universidad Complutense de Madrid J. R. Peláez Identification of non-ordinary mesons from their Regge trajectories obtained.
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
Nils A. Törnqvist University of Helsinki Talk at Frascati January The Light Scalar Nonet, the sigma(600), and the EW Higgs.
* Collaborators: A. Pich, J. Portolés (Valencia, España), P. Roig (UNAM, México) Daniel Gómez Dumm * IFLP (CONICET) – Dpto. de Física, Fac. de Ciencias.
Jets and α S in DIS Maxime GOUZEVITCH Laboratoire Leprince-Ringuet Ecole Polytechnique – CNRS/IN2P3, France On behalf of the collaboration On behalf of.
Denis Parganlija (Frankfurt U.) Excited QCD 2010, Tatranska Lomnica/Slovakia Nature of Light Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450)
XXXI Bienal de la RSEF, Granada, España, septiembre Angel Gómez Nicola Universidad Complutense Madrid COEFICIENTES DE TRANSPORTE EN UN GAS.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
The Importance of the TeV Scale Sally Dawson Lecture 3 FNAL LHC Workshop, 2006.
Isabell-A. Melzer-Pellmann DIS 2007 Charm production in diffractive DIS and PHP at ZEUS Charm production in diffractive DIS and PHP at ZEUS Isabell-Alissandra.
Integrating out Holographic QCD Models to Hidden Local Symmetry Masayasu Harada (Nagoya University) Dense strange nuclei and compressed baryonic matter.
H1 QCD analysis of inclusive cross section data DIS 2004, Štrbské Pleso, Slovakia, April 2004 Benjamin Portheault LAL Orsay On behalf of the H1 Collaboration.
Departamento de Física Teórica II. Universidad Complutense de Madrid José R. Peláez ON THE NATURE OF THE LIGHT SCALAR NONET FROM UNITARIZED CHIRAL PERTURBATION.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
L. Nemenov, EXA05 Using  -  and  -K atoms for the experimental check of low-energy QCD L. Nemenov (CERN, Switzerland) Presented by L. Tauscher Basel.
Helmholtz-Instituts für Strahlen- und Kernphysik J. Ruiz de Elvira Precise dispersive analysis of the f0(500) and f0(980) resonances R. García Martín,
Extending forward scattering Regge Theory to internediate energies José R. Peláez Departamento de Física Teórica II. Universidad Complutense de Madrid.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
Denis Parganlija (Frankfurt U.) Finite-Temperature QCD Workshop, IST Lisbon Non-Strange and Strange Scalar Quarkonia Denis Parganlija In collaboration.
Elastic meson-nucleon and nucleon-nucleon scattering: models vs. all available data. E. Martynov *, J.R. Cudell, A. Lengyel * Bogolyubov Institute for.
Ignasi Rosell Universidad CEU Cardenal Herrera IFIC, CSIC–Universitat de València The Oblique S Parameter in Higgsless Electroweak Models 18.
Chiral Extrapolations of light resonances
Enhanced non-qqbar and non-glueball Nc behavior of light scalar mesons
Resonance saturation at next-to-leading order
Review of light scalars: from confusion to precision
A novel probe of Chiral restoration in nuclear medium
Review of light scalars: from confusion to precision
Precision Measurement of η Radiative Decay Width via Primakoff Effect
A New Measurement of |Vus| from KTeV
The nature of the lightest scalar meson, its Nc behavior
: the dispersive and analytic approach
B. El-Bennich, A. Furman, R. Kamiński, L. Leśniak, B. Loiseau
Understanding DsJ*(2317) and DsJ(2460)
AN EXPLANATION OF THE D5/2-(1930) AS A rD BOUND STATE
The decays KS, L into four leptons
Remarks on mass difference between the charged and neutral K*(892)
Presentation transcript:

On the precision of  scattering from chiral dispersive calculations José R. Peláez Departamento de Física Teórica II. Universidad Complutense de Madrid J. R. Peláez and F.J. Ynduráin. PRD68:074005,2003 F.J. Ynduráin. hep-ph/ J. R. Peláez and F.J. Ynduráin. hep-ph/ To appear in Phys. Rev. D.

Motivation: Why a precise determination of  scattering ? Pions  Goldstone Bosons of the spontaneous chiral symmetry breaking In massless QCD, pions also massless Massless GB non interacting at low energies!! Quark masses  massive pseudo-GB. M q = quark mass If B 0 large: NO free parameters!! But How the QCD vacuum behaves (ferromagnet or antiferromagnet or what)? A precise determination of  scattering checks how big is B 0, and tells us... DIRAC has been a CERN experiment to measure the  scattering lengths

Roy Equations: results Recent Revival : Using  “data” from  N + ”Regge” + old K l4 : Fig.14. Ananthanarayan, Colangelo,Gasser & Leutwyler (2001) Adding ChPT+ Other, non ChPT, inputs (F s...): Colangelo,Gasser & Leutwyler (2001) TINY ERRORS CENTRAL VALUE LOWERED AGAIN NO NEW DATA CGL  Set of coupled integral equations relating all  channels used to analyse scattering data. 70’s: Using  data from  N+Regge+ old K l4 : Basdevant, Froggat, Petersen (74-77) We have recently questioned this high precision J. R. Peláez and F.J. Ynduráin. PRD68:074005,2003 They also give tiny errors for phase shifts and the  mass and width

QUESTIONS ON THE CGL CALCULATION Inconsistent with other sum rules, high energy data, and Regge Theory Ignores systematic errors in data Input from scalar factor model dependent and challenged Inconsistent with other sum rules, high energy data, and Regge Theory

1) Inconsistency with High energy data and Regge: When using correct Regge behavior (as from QCD) in the Olsson and Froissart-Gribov sum rules there is a 2.5 to 4 sigma mismatch (even more now). J. R. Peláez and F.J. Ynduráin. PRD68:074005,2003 Consistency checks Amplitude nedded only at t=0 or t=4M 2 Olsson sum rule: Froissart-Gribov: Unsubtracted, OF COURSE, to have an independent check from Roy eqs. We do not extract the low energy from here. We use the low energy from CGL and check the consistency with standard Regge.

Example: D-wave scattering length a +0 from Froissart-Gribov Sum S2 and P waves up to 820 MeV -a 0+ from Roy-CGL =(-2.10 ±0.01)10 -4 Other waves up to 1420 S2 and P waves from 820 to 1420 MeV from CERN-Munich data & CGL. = (1.84±0.05) sigma mismatch. Also 4 sigma for a 00, b 1 and 2.5 sigma for Olsson Sum Rules Low energy Pomeron >1420 MeV = (0.68 ±0.07)10 -4 We used a standard Pomeron residue  P =3.0 ±0.3 generous error!! We will see... I=2 Regge >1420 MeV = (-0.06 ±0.02) =(0.36±0.09)10 -4 High energy

Suggested our Regge behavior was incorrect due to crossing symmetry sum rules violations noticed in the 70’s (Pennington.) when used with CERN-Munich data. They claimed that FACTORIZATION did not apply to  scattering Caprini, Colangelo, Gasser & Leutwyler...

Regge Analysis of ,  N and NN J. R. Peláez and F.J. Ynduráin. hep-ph/ At high energy, the amplitudes are governed by the exchange of Regge poles related to resonances that couple in the t channel. Regge Pole In QCD the f’s only depend on t and the initial hadrons (like structure functions) factorize (Gell-Mann, Gribov, DGLAP), that is So that we get the pole and f N R (t)/ f  R (t) from  N and NN scattering.

Regge parameters of  N and NN J. R. Peláez and F.J. Ynduráin. hep-ph/ Fit to 270 data points of  N, KN and NN total cross sections for kinetic energy between 1 and 16.5 GeV

  +  - (mb)  s(GeV) Regge description of ,  N, NN cross sections   -  - (mb)   0  - (mb) Excelent fit above 2 GeV J. R. Peláez and F.J. Ynduráin. hep-ph/ Results between total  data and CERN- Munich for 1.4<  s<2GeV Matches CERN- Munich at 1.4 GeV. 4 EXPERIMENTS, ‘67, ’73, ’76,’80: IGNORED by Colangelo, Gasser & Leutwyler Pomeranchuk theorem: Same    13.2±0.3 mb. CGL use 5±3 mb

Regge description of ,  N, NN cross sections Best Values f N P /f  P 1.406±0.007  0.366±0.010  0.94 ±0.10 ±0.10 PP 2.56 ±0.03  P’ 1.05 ±0.05 Veneziano model ~0.95 Rho dominance model ~0.84  : Excellent fit above 2 GeV Has to be used above >1.42 GeV Quark-model value =3/2 Respects QCD factorization Remarkable description of  K Within 20% of SU(3) limit= 0.82 f N P /f K P 0.67±0.01 J. R. Peláez and F.J. Ynduráin. hep-ph/ Impressive description of  N, NN OUR DESCRIPTION Drammatic improvement in Pomeron

“non standard Regge” used in recent dispersive calculations.   +  - (mb) The “non standard Regge” of CGL lies systematically BELOW the DATA ( despite the large   compensates a bit the too small Pomeron)  s(GeV)   0  - (mb)   -  - (mb)

Regge description of ,  N, NN cross sections J. R. Peláez and F.J. Ynduráin. hep-ph/ For us, a description up to ~15 GeV is enough, but at higher energies hadronic cross sections RAISE. We improve: The  <15 GeV description is unaffected ss ss

Crossing sum rules to improve the rho residue The crossing sum rule At low energy, the S wave cancels and the well known P wave dominates. At high energy is purely Regge rho exchange.   = 0.94 ±0.10(Stat.) ±0.10(Syst.) J. R. Peláez and F.J. Ynduráin. hep-ph/ Crossing sum rules satisfied if Regge is used down to ~1.42 MeV Conclusion The Regge used by CGL does NOT describe the data. The updated analysis confirms the mismatch in their analysis

QUESTIONS ON THE CGL CALCULATION Inconsistent with other sum rules, high energy data, and Regge Theory Ignores systematic errors in data Input from scalar factor model dependent and challenged Ignores systematic errors in data

One of their main sources of error is the matching phase at 800 MeV. CGL consider  11 -  00 “in the hope” that some errors would cancel in that combination. NOWHERE the experimentalistsclaim that such cancellation occurs at 800 MeV. Experimentalists NEVER give such a difference. ChPT + Roy Equations. Uncertainties on the matching point. Combined with  11 =108.9 ±2 o they arrive at: 23.4 ±4 o CERN-Munich Analysis B 24.8 ±3.8 o Estabrooks & Martin, “s-channel” 30.3 ±3.4 Estabrooks & Martin, “t-channel” 26.5 ±4.2 Protopopescu VI 26.6±3.7 o  11 -  00 =26.6±2.8 o  00 =82.3 ±3.4 o Still, ACGL choose at 800 MeV: Estabrooks & Martin: “...systematic changes in  00 of the order of 10 o ” The CERN-Munich experiment has 5 analysis with  10 o systematic error BUT

ChPT + Roy Equations. Uncertainties on the matching point. One of the largest sources of uncertainty is the matching phase at  s = 800 MeV The five CERN Munich analysis yield ~ 4 o statistical errors in  00, but disagree between themselves and the Berkeley data by ~ 10 o systematic errors throughout the whole low energy region. The differences at 800 are not oscillations of statistical nature that can be averaged but systematic errors of the different procedures to extract the phases

ChPT + Roy Equations. Uncertainties on the matching point. Ananthanarayan, Colangelo Gasser & Leutwyler consider  11 -  00 “in the hope” that some errors would cancel in that combination. NOWHERE the experimentalists claim that such cancellation occurs at 800 MeV. They NEVER give such a difference. Combined with  11 =108.9 ±2 o they arrive at: 23.4 ±4 o CERN-Munich Analysis B 24.8 ±3.8 o Estabrooks & Martin, “s-channel” 30.3 ±3.4 Estabrooks & Martin, “t-channel” 26.5 ±4.2 Protopopescu VI 26.6±3.7 o  11 -  00 =26.6±2.8 o  00 =82.3 ±3.4 o Still, ACGL choose at 800 MeV: Estabrooks & Martin: “...systematic changes in  00 of the order of 10 o ” The CERN-Munich experiment has 5 analysis with  10 o systematic error Protopopescu also gives  11 -  00 =19 ±4 again  10 o of systematic error One of their largest sources of error is subestimated by a factor of 3 BUT

CONCLUSIONS 2) Neglects systematic errors in  data from  N: Most relevant input, phases at matching point (800MeV), assumed error 3.4 o, is too small by a factor up to 3 F.J. Ynduráin. hep-ph/ ) Other non-ChPT input: Pion scalar radius needed for l 3. S = fm 2 Dispersive estimate model dependent. S. Descotes et al. EJPC24,469(2002) Estimate with recent data S = fm 2 Bound: S >= fm 2 F.J. Yndurain, Phys.Lett.B578:99-108,2004 Donoghue, Gasser, Leutwyler.NPB343,341(1990) 1) Inconsistent with High energy data and Regge: When using correct Regge behavior (as from QCD) in the Olsson and Froissart-Gribov sum rules there was a 2 to 4 sigma mismatch (even more now). J. R. Peláez and F.J. Ynduráin. PRD68:074005,2003 The recent chiral dispersive  scattering calculations by Colangelo Gasser & Leutwyler With our most recent description of DATA, the mismatch persists. Several sum-rules OFF by 2.5 to 4 sigmas. Factorization & crossing can be accomodated simultaneously in a Regge description of  scattering data J. R. Peláez and F.J. Ynduráin. PRD in press.

Using  “data” from  N +”Regge” +new K l4 ( E865 (01)) Descotes et al.Kaminski et al. Larger central values Larger errors Despite using incorrect Regge, other recent Roy analysis safer due to larger central values and errors All numbers from Colangelo, Gasser and Leutwyler: scattering lengths,  scattering phases, and the mass and width of the  (f 0 (600)) should be taken cautiously, since the uncertainties are largely underestimated