LaRC Wind Observations with the VALIDAR Doppler Lidar Grady J. Koch 1, Jeffrey Y. Beyon 2, Bruce W. Barnes 1, and Michael J. Kavaya 1 1 NASA Langley Research.

Slides:



Advertisements
Similar presentations
(Program Director: George Komar)
Advertisements

Studying the Physical Properties of the Atmosphere using LIDAR technique Dinh Van Trung and Nguyen Thanh Binh, Nguyen Dai Hung, Dao Duy Thang, Bui Van.
Status of DAWN Data from NASA GRIP Campaign Michael Kavaya NASA Langley Research Center GRIP Science Team Meeting May 9-10, 2012.
Lecture 12 Content LIDAR 4/15/2017 GEM 3366.
1 Doppler Wind Lidar Technology Roadmap Ken Miller, Mitretek Systems Coauthors –see Reference 2 January 27, 2004.
Planetary Environment Atmospheric Research Laboratory, PEARL University of Michigan Ann Arbor, MI.
Laser Anemometry P M V Subbarao Professor Mechanical Engineering Department Creation of A Picture of Complex Turbulent Flows…..
Introduction to LIDAR Mapping Technology
Visible Laser Light — Do Not Stare into Beam or View Directly with Optical Instruments Initials: __________Date: __________ CW power: ______________WType:
1.55µm Pulsed Fiber lidar for wake vortex detection (axial or transverse) Agnes DOLFI-BOUTEYRE, Beatrice AUGERE, Matthieu VALLA, Didier GOULAR, Didier.
Updates on Single Frequency 2 µm Laser Sources
ESTO Earth Science Technology Office Peri 8/9/2015 NASA’s Earth Science Technology Office Laser Technology Development Program and.
1 Kavaya – IIP-2004 Compact, Engineered, 2-Micron Coherent Doppler Wind Lidar Prototype: A NASA IIP Selected Proposal by M. J. Kavaya, G. J. Koch, J. Yu,
M. Kavaya, J. Beyon, G. Creary, G. Koch, M. Petros, P. Petzar, U
Project Overview Laser Spectroscopy Group A. A. Ruth Department of Physics, University College Cork, Cork, Ireland.
Application of a High-Pulse-Rate, Low-Pulse-Energy Doppler Lidar for Airborne Pollution Transport Measurement Mike Hardesty 1,4, Sara Tucker 4*,Guy Pearson.
Formatvorlage des Untertitelmasters durch Klicken bearbeiten 1/26/15 1 kHz, multi-mJ Yb:KYW bulk regenerative amplifier 1 Ultrafast Optics and X-Ray Division,
October 16-18, 2012Working Group on Space-based Lidar Winds 1 AEOLUS STATUS Part 1: Design Overview.
Laser Technology Investments by ESTO
G O D D A R D S P A C E F L I G H T C E N T E R Goddard Lidar Observatory for Winds (GLOW) Wind Profiling from the Howard University Beltsville Research.
GSFC Lidar Working Group Meeting Frisco CO, June 2004 HARLIE – GLOW Union UV Doppler Demonstration Geary Schwemmer Bruce Gentry NASA GSFC.
Progress On Laser Transmitters For Direct Detection Wind Lidars Floyd Hovis, Fibertek, Inc. Jinxue Wang, Raytheon Space and Airborne Systems Michael Dehring,
B. Gentry/GSFCSLWG 06/29/05 Scaling Ground-Based Molecular Direct Detection Doppler Lidar Measurements to Space Using Wind Profile Measurements from GLOW.
Upendra N. Singh, Mulugeta Petros, Jirong Yu, and Michael J. Kavaya NASA Langley Research Center, Hampton, Virginia USA Timothy Shuman and Floyd.
Space Lidar Working Group July 2008 Status of the Tropospheric Wind lidar Technology Experiment (TWiLiTE) Instrument Incubator Program Bruce Gentry 1,
1 Kavaya – IIP-2004 LaRC Instrument Incubator Project Update by M. J. Kavaya, G. J. Koch, J. Yu, U. N. Singh, B. Trieu, F. Amzajerdian NASA Langley Research.
Mike Newchurch 1, Shi Kuang 1, John Burris 2, Steve Johnson 3, Stephanie Long 1 1 University of Alabama in Huntsville, 2 NASA/Goddard Space Flight Center,
UVC Airborne Holographic Lidar Transceiver Marc Hammond, David Huish, Tom Wilkerson, Scott Cornelsen Space Dynamics Laboratory Utah State University
Goddard Space Flight Center Overview of An Advanced Earth Science Mission Concept Study for a GLOBAL WIND OBSERVING SOUNDER A study carried out by GSFC.
Micro-Pulse Lidar (MPL)
Scaling Surface and Aircraft Lidar Results for Space-Based Systems (and vice versa) Mike Hardesty, Barry Rye, Sara Tucker NOAA/ETL and CIRES Boulder, CO.
Pointing Determination for a Coherent Wind Lidar Mission
B. Gentry/GSFCGTWS 2/26/01 Doppler Wind Lidar Measurement Principles Bruce Gentry NASA / Goddard Space Flight Center based on a presentation made to the.
GIFTS - The Precursor Geostationary Satellite Component of a Future Earth Observing System GIFTS - The Precursor Geostationary Satellite Component of a.
27-May-16Working Group on Spacebased Lidar Winds Current Lidar Activities at ETL Mike Hardesty and Alan Brewer NOAA Environmental Technology Laboratory.
Fig. 3 Wind measurements experimental setup Lidar (light detection and ranging) operates using the same concept of microwave RADAR, but it employs a lot.
Update on Hybrid Detection DWL Study* G. D. Emmitt WG on Space-based Lidar Winds Oxnard, CA 7-9 February, 2001 *funded by the IPO.
Update on NASA’s Sensor Web Experiments Using Simulated Doppler Wind Lidar Data S. Wood, D. Emmitt, S. Greco Simpson Weather Associates, Inc. Working Group.
Spaceborne 3D Imaging Lidar John J. Degnan Geoscience Technology Office, Code Code 900 Instrument and Mission Initiative Review March 13, 2002.
Performance Testing of a Risk Reduction Space Winds Lidar Laser Transmitter Floyd Hovis, Fibertek, Inc. Jinxue Wang, Raytheon Space and Airborne Systems.
Kavaya - 1 Components of the Space-Based Lidar Winds Roadmap Michael Kavaya, Farzin Amzajerdian, Grady Koch, Jirong Yu, Upendra Singh NASA/LaRC Working.
Preparing for ADM cal/val using DAWN and TWiLiTE in two arctic campaigns G. D. Emmitt and S. Greco Simpson Weather Associates M. J. Kavaya, G. Koch and.
Mobile Coherent Doppler LIDAR: Proposed Technologies for Scanning, Security and Wireless Communications GSFC at GISS Motivation:  The use of Coherent.
A Thermospheric Lidar for He 1083 nm, Density and Doppler Measurements
Status of the Laser Risk Reduction Program at LaRC Michael Kavaya, Upendra Singh NASA/LaRC Working Group on Space-Based Lidar Winds Sedona, AZ Feb. 1-3,
by M. J. Kavaya, F. Amzajerdian, J. Yu, G. J. Koch, U. N. Singh
Coherent Doppler Lidar Measurement of River Surface Velocity
GWOLF and VALIDAR Comparisons M. Kavaya & G. Koch NASA/LaRC D. Emmitt & S. Wood SWA Lidar Working Group Meeting Sedona, AZ January 2004.
MSFC/GHCC 1 2 micron pulsed ground based lidar Non-Contact Velocity Measurements on Simulated River Surfaces Using Coherent Doppler Lidar Preliminary Results.
Kavaya-1 Coherent Doppler Lidar Roadmap to Both the NRC Decadal Survey “Science Demonstration” and “Operational” Missions Michael J. Kavaya Jirong Yu Upendra.
1 System analysis of WDM optically-assisted ADC Payam Rabiei and A. F. J. Levi The University of Southern California University Park, DRB 118 Los Angeles,
Date of download: 6/2/2016 Copyright © 2016 SPIE. All rights reserved. Dye ring laser control, spectroscopic, and locking feedback system showing overlapping,
Jens Redemann 1, B. Schmid 1, J. M. Livingston 2, P. B. Russell 3, J. A. Eilers 3, P. V. Hobbs 4, R. Kahn 5, W. L. Smith Jr. 6, B. N. Holben 7, C.K. Rutledge.
Early VALIDAR Case Study Results Rod Frehlich: RAL/NCAR Grady Koch: NASA Langley.
WARNING WARNING WARNING WARNING
Multiplexed saturation spectroscopy with electro-optic frequency combs
E- source R&D update ILC source laser project Faraday rotation experiment A. Brachmann 05/07/07 SLAC R&D meeting.
Regional Radiation Center (RRC) II (Asia)
Huailin Chen, Bruce Gentry, Tulu Bacha, Belay Demoz, Demetrius Venable
Doppler Radar Basics Pulsed radar
Two-Photon Absorption Spectroscopy of Rubidium
Electro Optic Sampling of Ultrashort Mid-IR/THz Pulses
Electromagnetic Spectrum
High Power, Uncooled InGaAs Photodiodes with High Quantum Efficiency for 1.2 to 2.2 Micron Wavelength Coherent Lidars Shubhashish Datta and Abhay Joshi.
Validation of airborne 1
Optimum Laser PRF Study for Pulsed Wind Lidars
Typical Vertical Resolution
Electromagnetic Spectrum Notes
Transverse coherence and polarization measurement of 131 nm coherent femtosecond pulses from a seeded FEL J. Schwenke, E. Mansten, F. Lindau, N. Cutic,
Eureka Stratospheric Ozone Differential Absorption LIDAR revived
Presentation transcript:

LaRC Wind Observations with the VALIDAR Doppler Lidar Grady J. Koch 1, Jeffrey Y. Beyon 2, Bruce W. Barnes 1, and Michael J. Kavaya 1 1 NASA Langley Research Center, Hampton, VA USA 2 California State University—Los Angeles, Department of Electrical and Computer Engineering, Los Angeles, CA USA

LaRC Objectives System testbed for advanced high-energy lasers and optical components for future airborne and spaceborne Doppler lidars. Serve as ground-based test bed validation source for future airborne and spaceborne lidar measurements Test advanced receiver and processing components.

LaRC Lidar Specifications Laser material: Ho:Tm:LuLiF Pulse energy = 95 mJ Pulse width = 180 ns Pulse repetition rate = 5 Hz Spectrum = single frequency Wavelength = nm Telescope aperture = 6 inches Detector: InGaAs heterodyne Digitization rate up to 2 Gs/s at 8 bits (500 Ms/s typical) Beam scanning: hemispherical coverage

LaRC Coherent Lidar Design cw laser pulsed laser

LaRC Vertical Wind Measurement—Clouds and Downdrafts

LaRC Vertical Wind Measurement—Thunderstorm

LaRC Horizontal Wind Measurement—Nocturnal Jet

LaRC Horizontal Wind Measurement—Cirrus in Jet Stream

LaRC Future Work Incorporate higher energy lasers (600 mJ laser demonstrated). Improve receiver efficiency. Implement advanced signal processing. Develop flight-hardened version.