1 ECE2030 Introduction to Computer Engineering Lecture 8: Quine-McCluskey Method Prof. Hsien-Hsin Sean Lee School of ECE Georgia Institute of Technology.

Slides:



Advertisements
Similar presentations
FUNCTION OPTIMIZATION Switching Function Representations can be Classified in Terms of Levels Number of Levels, k, is Number of Unique Boolean (binary)
Advertisements

Glitches & Hazards.
CSEE 4823 Advanced Logic Design Handout: Lecture #2 1/22/15
K-Map Simplification COE 202 Digital Logic Design Dr. Aiman El-Maleh
Based on slides by: Charles Kime & Thomas Kaminski © 2004 Pearson Education, Inc. ECE/CS 352: Digital System Fundamentals Lecture 8 – Systematic Simplification.
ECE C03 Lecture 31 Lecture 3 Two-Level Logic Minimization Algorithms Hai Zhou ECE 303 Advanced Digital Design Spring 2002.
Quine-McCluskey (Tabular) Minimization  Two step process utilizing tabular listings to:  Identify prime implicants (implicant tables)  Identify minimal.
Chapter 3 Simplification of Switching Functions. Karnaugh Maps (K-Map) A K-Map is a graphical representation of a logic function’s truth table.
بهينه سازي با روش Quine-McCluskey
Quine-McClusky Minimization Method Module M4.3 Section 5.3.
Chapter 3 Simplification of Switching Functions
Quine-McClusky Minimization Method Discussion D3.2.
CS 140 Lecture 6 Professor CK Cheng UC San Diego.

ECE 331 – Digital System Design Karnaugh Maps and Determining a Minimal Cover (Lecture #7) The slides included herein were taken from the materials accompanying.
SYEN 3330 Digital Systems Jung H. Kim Chapter SYEN 3330 Digital Systems Chapter 2 – Part 5.
IKI a-Simplification of Boolean Functions Bobby Nazief Semester-I The materials on these slides are adopted from those in CS231’s Lecture.
Overview Part 2 – Circuit Optimization 2-4 Two-Level Optimization
Digital Logic and Design Vishal Jethva Lecture No. 10 svbitec.wordpress.com.
Digital Logic & Design Vishal Jethava Lecture 12 svbitec.wordpress.com.
1 Simplification of Boolean Functions:  An implementation of a Boolean Function requires the use of logic gates.  A smaller number of gates, with each.
1 Chapter 5 Karnaugh Maps Mei Yang ECG Logic Design 1.
Department of Computer Engineering
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Chapter 2 – Combinational Logic Circuits Part 2.
Quine-McCluskey (Tabular) Minimization Two step process utilizing tabular listings to: Identify prime implicants (implicant tables) Identify minimal PI.
Optimization Algorithm
Two-Level Simplification Approaches Algebraic Simplification: - algorithm/systematic procedure is not always possible - No method for knowing when the.
ECE 2110: Introduction to Digital Systems PoS minimization Don’t care conditions.
ECE 3110: Introduction to Digital Systems Symplifying Products of sums using Karnaugh Maps.
Combinational Logic Part 2: Karnaugh maps (quick).
Two Level Networks. Two-Level Networks Slide 2 SOPs A function has, in general many SOPs Functions can be simplified using Boolean algebra Compare the.
Copyright © 2004 by Miguel A. Marin Revised McGILL UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING COURSE ECSE DIGITAL SYSTEMS.
Simplification of incompletely specified functions using QM Tech.
ECE2030 Introduction to Computer Engineering Lecture 8: Quine-McCluskey Method Prof. Hsien-Hsin Sean Lee School of Electrical and Computer Engineering.
CMPUT Computer Organization and Architecture II1 CMPUT329 - Fall 2003 Topic 5: Quine-McCluskey Method José Nelson Amaral.
1 Quine-McCluskey Method. 2 Motivation Karnaugh maps are very effective for the minimization of expressions with up to 5 or 6 inputs. However they are.
Computer Engineering (Logic Circuits) (Karnaugh Map)
Chapter3: Gate-Level Minimization Part 1 Origionally By Reham S. Al-Majed Imam Muhammad Bin Saud University.
CS2100 Computer Organisation
ECE2030 Introduction to Computer Engineering Lecture 6: Canonical (Standard) Forms Prof. Hsien-Hsin Sean Lee School of Electrical and Computer Engineering.
Copied with Permission from prof. Mark PSU ECE
Karnaugh Maps (K maps). What are Karnaugh 1 maps?  Karnaugh maps provide an alternative way of simplifying logic circuits.  Instead of using Boolean.
Prof. Hsien-Hsin Sean Lee
Karnaugh Maps (K-Map) A K-Map is a graphical representation of a logic function’s truth table.
1 Example: Groupings on 3-Variable K-Maps BC F(A,B,C) = A ’ B ’ A BC F(A,B,C) = B ’ A
ECE/CS 352 Digital System Fundamentals1 ECE/CS 352 Digital Systems Fundamentals Spring 2001 Chapter 2 – Part 5 Tom Kaminski & Charles R. Kime.
Key Observation Adjacencies in the K-Map
Digital Logic (Karnaugh Map). Karnaugh Maps Karnaugh maps (K-maps) are graphical representations of boolean functions. One map cell corresponds to a row.
Karnaugh Maps (K maps).
EECS 270 Lecture 10. K-map “rules” – Only circle adjacent cells (remember edges are adjacent!) – Only circle groups that are powers of 2 (1, 2,
Lecture 4: Four Input K-Maps CSE 140: Components and Design Techniques for Digital Systems CK Cheng Dept. of Computer Science and Engineering University.
State university of New York at New Paltz Electrical and Computer Engineering Department Logic Synthesis Optimization Lect10: Two-level Logic Minimization.
ECE 301 – Digital Electronics Minimizing Boolean Expressions using K-maps, The Minimal Cover, and Incompletely Specified Boolean Functions (Lecture #6)
School of Computer and Communication Engineering, UniMAP DKT 122/3 - DIGITAL SYSTEM I Chapter 4A:Boolean Algebra and Logic Simplification) Mohd ridzuan.
Lecture 5: K-Map minimization in larger input dimensions and K-map minimization using max terms CSE 140: Components and Design Techniques for Digital Systems.
Chapter 3 Simplification of Switching Functions. Simplification Goals Goal -- minimize the cost of realizing a switching function Cost measures and other.
©2010 Cengage Learning SLIDES FOR CHAPTER 6 QUINE-McCLUSKEY METHOD Click the mouse to move to the next page. Use the ESC key to exit this chapter. This.
Technical Seminar II Implementation of
Digital Logic & Design Dr. Waseem Ikram Lecture 09.
Lecture 6 Quine-McCluskey Method
Prof. Hsien-Hsin Sean Lee
Digital Logic and Design
ECE 331 – Digital System Design
CHAPTER 5 KARNAUGH MAPS 5.1 Minimum Forms of Switching Functions
SYEN 3330 Digital Systems Chapter 2 – Part 5 SYEN 3330 Digital Systems.
SYEN 3330 Digital Systems Chapter 2 – Part 6 SYEN 3330 Digital Systems.
Overview Part 2 – Circuit Optimization
3-Variable K-map AB/C AB/C A’B’ A’B AB AB’
ECE 331 – Digital System Design
Presentation transcript:

1 ECE2030 Introduction to Computer Engineering Lecture 8: Quine-McCluskey Method Prof. Hsien-Hsin Sean Lee School of ECE Georgia Institute of Technology

H.-H. S. Lee 2 Quine-McCluskey Method A systematic solution to K-Map when more complex function with more literals is given B n n In principle, can be applied to an arbitrary large number of inputs, i.e. works for B n where n can be arbitrarily large One can translate Quine-McCluskey method into a computer program to perform minimization

H.-H. S. Lee 3 Quine-McCluskey Method Two basic steps Finding all prime implicants of a given Boolean function Select a minimal set of prime implicants that cover this function

H.-H. S. Lee 4 Q-M Method (I) Transform the given Boolean function into a canonical SOP function Convert each Minterm into binary format Arrange each binary minterm in groups All the minterms in one group contain the same number of “1”

H.-H. S. Lee 5 Q-M Method: Grouping minterms (29) (30) (2) (4) (8) (16) A B C D E (0) (6) (10) (12) (18) (7) (11) (13) (14) (19)

H.-H. S. Lee 6 Q-M Method (II) Combine terms with Hamming distance=1 from adjacent groups  Check (  ) the terms being combined The checked terms are “covered” by the combined new term Keep doing this till no combination is possible between adjacent groups

H.-H. S. Lee 7 Q-M Method: Grouping minterms (29) (30) (2) (4) (8) (16) A B C D E (0) (6) (10) (12) (18) (7) (11) (13) (14) (19) A B C D E   (0,2) – 0  (0,4)  (0,8)  (0,16)  (2,6)  (2,10)  (2,18)  (4,6) (4,12) (8,10) (8,12) (16,18) (6,7)  (6,14)  (10,11)  (10,14) (12,13)  (12,14) (18,19)  A B C D E (13,29)  (14,30) 

H.-H. S. Lee 8 Q-M Method: Grouping minterms A B C D E   (0,2) – 0  (0,4) (0,8)  (0,16)  (2,6)  (2,10)  (2,18) (4,6) (4,12) (8,10) (8,12) (16,18) (6,7) (6,14) (10,11) (10,14) (12,13) (12,14) (18,19) (13,29) (14,30) A B C D E (0,2,4,6) – 0  (0,2,8,10) – 0  (0,2,16,18) – 0  (0,4,8,12)   (2,6,10,14)  (4,6,12,14)  (8,10,12,14)  A B C D E (0,2,4, ,10,12,14)      

H.-H. S. Lee 9 Prime Implicants (6,7) (10,11) (12,13) (18,19) (13,29) (14,30) (0,2,16,18) – 0 (0,2,4, ,10,12,14) A B C D E Unchecked terms are prime implicants

H.-H. S. Lee 10 Prime Implicants (6,7) (10,11) (12,13) (18,19) (13,29) (14,30) (0,2,16,18) – 0 (0,2,4, ,10,12,14) A B C D E Unchecked terms are prime implicants

H.-H. S. Lee 11 Q-M Method (III) Form a Prime Implicant Table X-axis: the minterm Y-axis: prime implicants  An  is placed at the intersection of a row and column if the corresponding prime implicant includes the corresponding product (term)

H.-H. S. Lee 12 Q-M Method: Prime Implicant Table (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX

H.-H. S. Lee 13 Q-M Method (IV) Locate the essential row from the table These are essential prime implicants The row consists of minterms covered by a single “  ” Mark all minterms covered by the essential prime implicants Find non-essential prime implicants to cover the rest of minterms Form the SOP function with the prime implicants selected, which is the minimal representation

H.-H. S. Lee 14 Q-M Method (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX

H.-H. S. Lee 15 Q-M Method (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14)

H.-H. S. Lee 16 Q-M Method (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14)

H.-H. S. Lee 17 Q-M Method (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7)

H.-H. S. Lee 18 Q-M Method (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7)

H.-H. S. Lee 19 Q-M Method (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11)

H.-H. S. Lee 20 Q-M Method (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11)

H.-H. S. Lee 21 Q-M Method (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18)

H.-H. S. Lee 22 Q-M Method (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18)

H.-H. S. Lee 23 Q-M Method (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19)

H.-H. S. Lee 24 Q-M Method (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19)

H.-H. S. Lee 25 Q-M Method (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29)

H.-H. S. Lee 26 Q-M Method (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29)

H.-H. S. Lee 27 Q-M Method (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29), (14,30) Now all the minterms are covered by selected prime implicants !

H.-H. S. Lee 28 Q-M Method (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29), (14,30) Now all the minterms are covered by selected prime implicants ! Note that (12,13), a non-essential prime implicant, is not needed

H.-H. S. Lee 29 Q-M Method Result (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX

H.-H. S. Lee 30 Q-M Method Example 2 Sometimes, simplification by K-map method could be less than optimal due to human error Quine-McCluskey method can guarantee an optimal answer XX X AB CD

H.-H. S. Lee 31 Grouping minterms (1) (4) (8) A B C D (0) (5) (6) (9) (10) (12) (7) (14) A B C D (0,1) (0,4) (0,8)     (1,5) (1,9) (4,5) – (4,6) 0 1 – 0 (4,12) – (8,9) – (8,10) 1 0 – 0 (8,12) 1 – 0 0      (5,7) (6,7) (6,14) (10,14) 1 – 1 0 (12,14)   A B C D (4,5,6,7) (4,6,12,14) (8,10,12,14)        (0,1,4,5) (0,1,8,9) – (0,4,8,12)         

H.-H. S. Lee 32 Prime Implicants A B C D (4,5,6,7) (4,6,12,14) (8,10,12,14) (0,1,4,5) (0,1,8,9) – (0,4,8,12) (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care

H.-H. S. Lee 33 Prime Implicants A B C D (4,5,6,7) (4,6,12,14) (8,10,12,14) (0,1,4,5) (0,1,8,9) – (0,4,8,12) (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care

H.-H. S. Lee 34 Prime Implicants A B C D (4,5,6,7) (4,6,12,14) (8,10,12,14) (0,1,4,5) (0,1,8,9) – (0,4,8,12) (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care

H.-H. S. Lee 35 Prime Implicants A B C D (4,5,6,7) (4,6,12,14) (8,10,12,14) (0,1,4,5) (0,1,8,9) – (0,4,8,12) (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care

H.-H. S. Lee 36 Prime Implicants A B C D (4,5,6,7) (4,6,12,14) (8,10,12,14) (0,1,4,5) (0,1,8,9) – (0,4,8,12) (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care

H.-H. S. Lee 37 Prime Implicants A B C D (4,5,6,7) (4,6,12,14) (8,10,12,14) (0,1,4,5) (0,1,8,9) – (0,4,8,12) (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care Essential PI Non-Essential PI

H.-H. S. Lee 38 Q-M Method Solution (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX A B C D (4,5,6,7) (4,6,12,14) (8,10,12,14) (0,1,4,5) (0,1,8,9) – (0,4,8,12) Don’t Care

H.-H. S. Lee 39 Yet Another Q-M Method Solution (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX A B C D (4,5,6,7) (4,6,12,14) (8,10,12,14) (0,1,4,5) (0,1,8,9) – (0,4,8,12) Don’t Care

H.-H. S. Lee 40 To Get the Same Answer w/ K-Map XX X AB CD XX X AB CD