Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.

Slides:



Advertisements
Similar presentations
Theory of probing orbitons with RIXS
Advertisements

Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
20 th century physics Relativity Quantum mechanics Brownian motion Particle physics Study of fields 21 st century Condensed Matter Physics electronically.
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 George Sawatzky.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Hidden Symmetries and Their Consequences in the Hubbard Model of t 2g Electrons* A. B. HARRIS In collaboration with Dr. T. Yildirim, (NIST, Gaithersburg,
Kris T. Delaney1, Maxim Mostovoy2, Nicola A. Spaldin3
Second harmonic generation on multiferroics Optical spectroscopy seminar 2013 spring Orbán Ágnes, Szaller Dávid
Lattice instability in frustrated systems Maxim Mostovoy MPI, Stuttgart Groningen, April 22, 2004 D. Khomskii, Cologne J. Knoester, Groningen R. Moessner,
Phase separation in strongly correlated electron systems with Jahn-Teller ions K.I.Kugel, A.L. Rakhmanov, and A.O. Sboychakov Institute for Theoretical.
Effect of iron doping on electrical, electronic and magnetic properties of La 0.7 Sr 0.3 MnO 3 S. I. Patil Department of Physics, University of Pune March.
Physics of multiferroic hexagonal manganites RMnO 3 Je-Geun Park Sungkyunkwan University KIAS 29 October 2005.
Theory of Orbital-Ordering in LaGa 1-x Mn x O 3 Jason Farrell Supervisor: Professor Gillian Gehring 1. Introduction LaGa x Mn 1-x O 3 is an example of.
Superconductivity in Zigzag CuO Chains
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach.
K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING.
This presentation contains two lectures given by E
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
Seillac, 31 May Spin-Orbital Entanglement and Violation of the Kanamori-Goodenough Rules Andrzej M. Oleś Max-Planck-Institut für Festkörperforschung,
Frank Bridges, UCSC, DMR Mn La/Ca O Figure 1 Figure 2 Local Structure Studies of La 1-x Ca x MnO 3 : Evidence for Magnetic Dimers We have used.
Chemistry Solid State Chemistry Transition Metal Oxide Rock Salt and Rutile: Metal-Metal Bonding Chemistry 754 Solid State Chemistry Lecture 23 May.
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
LOCAL PROBE STUDIES IN MANGANITES AND COMPLEX OXIDES V.S. Amaral 1, A.M.L. Lopes 2, J.P. Araújo 3, P.B. Tavares 4, T.M. Mendonça 3,5, J. S. Amaral 1, J.N.
Berry Phase Effects on Electronic Properties
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
Entangled phase diagrams of the 2D Kugel-Khomskii models Wojciech Brzezicki Andrzej M. Oleś M. Smoluchowski Institute of Physics, Kraków, Poland.
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Magnetic transitions of multiferroics revealed by photons 黃迪靖 同步輻射研究中心 清華大學物理系 May 9, 2007 Multiferroicity Soft x-ray magnetic scattering Magnetic transitions.
Transition Metal Oxides Rock Salt and Rutile: Metal-Metal Bonding
Neutron Scattering Studies of Tough Quantum Magnetism Problems
Intraatomic vs Interatomic Interactions John B. Goodenough (University of Texas at Austin) DMR Intellectual Merit Localized electrons have stronger.
Title: Multiferroics 台灣大學物理系 胡崇德 (C. D. Hu) Abstract
Magnetic Neutron Diffraction the basic formulas
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
Hall effect and conductivity in the single crystals of La-Sr and La-Ba manganites N.G.Bebenin 1), R.I.Zainullina 1), N.S.Chusheva 1), V.V.Ustinov 1), Ya.M.Mukovskii.
The Electronic Structure of the Ti4O7 Magneli Phase
The Structure and Dynamics of Solids
Strontium Ruthenate Rachel Wooten Solid State II Elbio Dagotto
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Spin Waves in Metallic Manganites Fernande Moussa, Martine Hennion, Gaël Biotteau (PhD), Pascale Kober-Lehouelleur (PhD) Dmitri Reznik, Hamid Moudden Laboratoire.
Magnetism and Magnetic Materials DTU (10313) – 10 ECTS KU – 7.5 ECTS Sub-atomic – pm-nm With some surrounding environment and a first step towards the.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Magnetic Moments in Amorphous Semiconductors Frances Hellman, University of California, Berkeley, DMR This project looks at the effect of magnetic.
Vector spin chirality in classical & quantum spin systems
Low-temperature properties of the t 2g 1 Mott insulators of the t 2g 1 Mott insulators Interatomic exchange-coupling constants by 2nd-order perturbation.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Transition Metal Oxide Perovskites: Band Structure, Electrical and Magnetic Properties Chemistry 754 Solid State Chemistry Lecture 22 May 20, 2002.
March Meeting 2007 Spin-polarization coupling in multiferroic transition-metal oxides Shigeki Onoda (U. Tokyo) Chenglong Jia (KIAS) Jung Hoon Han (SKKU)
Jeroen van den Brink LaOFeAs -- multiferroic manganites Krakaw 19/6/2008 Gianluca Giovannetti,Luuk Ament,Igor Pikovski,Sanjeev Kumar,Antoine Klauser,Carmine.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Evolution of the orbital Peierls state with doping
Evolution of Spin-Orbital-Lattice Coupling in RVO3 Perovskites
Image © NPG Rogério de Sousa
and to what degree they may be forbidden depends on selection rules:
Electronic polarization. Low frequency dynamic properties.
Hyperfine interaction studies in Manganites
Diamagnetism and paramagnetism
Jahn-Teller distortion in manganites
Phases of Mott-Hubbard Bilayers Ref: Ribeiro et al, cond-mat/
Spin-orbit coupling and coupled charge-spin-orbital state in iridates
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005

Outline Coupling of orbital degrees of freedom to: -- Lattice -- Spins -- Charge Orbital induced ferroelectricity in manganites Dima Efremov, JvdB, Daniel Khomskii, Nature Materials 3, 853 (2004)

Lottermoser et al., Nature 430, 541 (2004). Van Aken et al., Nature Mat. 3, 164 (2004). Kimura et al., Nature 426, 55 (2003). Hur et al., Nature 429, 392 (2004). Zheng et al., Science 303, 661 (2004). Fiebig et al., Nature 419, 818 (2002). Wang et al., Science 299, 1719 (2003). Spaladin, Physics World, April Magnetic Ferroelectrics Possible application: switching of magnetic bits by electric field Why study them? Fundamental interest: why rare? How to get around? Magnetic ferroelectrics are very rare!

What is a ferroelectric? dipole disorder ferroelectric Breaking of inversion symmetry

Valence electrons are in localized 3d orbitals R a correlated electron systems R a a R >>a R >> a conventional metals, semiconductors What is special about manganites? Do atomic physics first, include translation symmetry later

3d orbitals of a Mn- ion e g orbitals t 2g orbitals Large Coulomb interaction between electrons on the ion Large Atomic Hund’s rule exchange Electron Spins Parallel

Orbitals behave like electron spins Compare orbitals and spins.... Orbitals are extra degree of freedom Impact on physical properties Order-disorder Thermodynamics Magnetism Lattice distortions Ferro-electricity Possible Multiferroic behavior

Orbitals and spins Similarities Angular momentum SU(2) algebra: [S x,S y ]=iS z Localized moment emergent from electron-electron interactions Spin-spin and orbital-orbital interaction due to superexchange Possibility of long range ordering

Orbitals and spins Differences SpinsOrbitals coupling to latticeWeakStrong Symmetry of HamiltionianHighLow ExcitationsGaplessGaped Frustration of orderSometimesAlways

10 Mn 4+ / Mn 3+ Oxygen 2- La 3+ /Ca 2+ Perovskite crystal structure of La 1-x Ca x MnO 3

t 2g orbitals Cubic Crystal field splitting – – – – – – – – – – – – Local considerations 5x egeg t 2g 5x egeg t 2g Mn (3+) = 3d4 Mn (4+) = 3d3 e g orbitals Mn 4+ / Mn 3+

Orbital induced ferroelectricity in manganites with doping near x=1/2 Mn (3+) = 3d4 eg 1 Mn (4+) = 3d3 eg 0 E.O. Wollan and W.C. Koeler, Phys. Rev. 100, 545 (1955) Charge ordering Ferro zig-zag chains Magnetic CE-type order

Interplay orbital, spin and charge egeg t 2g Bond center Ferro t egeg t 2g Site center Antiferro JvdB, Khomskii, PRL 82, 1016 (1999) J AF Formally: DDEX model

DDEX model

Near x=0.4 : Bond-centered charge ordering A.Daoud-Aladine et al., PRL (2002) egeg t 2g Dimer

Near x=0.5 : Site-centered charge ordering E.O. Wollan and W.C. Koeler, Phys. Rev. 100, 545 (1955)

Ferroelectric? x=0.5x=0.4 Site centered CO Bond centered CO Ferro-electric groundstate 0.4 < x < 0.5 intermediate It is allowed by symmetry:Can happenWill happen

Magnetic structure of Zener polaron? CE type ? Or: Jaffet-Kittel structure“orthogonal”structure

Magnetic Structure x=0.5x= < x < 0.5 intermediate JvdB, Khaliullin, Khomskii, PRL 83, 5118 (1999)

Calculated phase diagram Dima Efremov, JvdB, Daniel Khomskii, Nature Mat. (2004) Continous transition from Site centered CO Bond centered CO to “In between” centered CO Breaking of inversion symmetry in the intermediate phase Ferro-electricityMagnetism

Prediction for manganites: Multiferroic phase appears close to x=1/2 Conclusions Between bond- and site-centered charge order: ferroelectric phase

Calculated magnetic structure From: To: We find a continous transition as function of doping x=0.4x=0.5

Crystal field splitting of e g levelsJahn-Teller distortion Lifting of degeneracy: lattice 5x 3x 2x egeg t 2g 5x 3x 2x egeg t 2g

x=0.5 : Site-centered charge ordering JvdB, Khaliullin, Khomskii, PRL 83, 5118 (1999); PRL 82, 1016 (1999)

Goodenough (1963) Orbital order in plane Orbital order LaMnO 3 Order by disorder