Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 9.1 Cellular respiration – Is the most prevalent and efficient catabolic.

Slides:



Advertisements
Similar presentations
Chapter 9 Cellular Respiration.
Advertisements

Overview: Life Is Work Living cells
Respiration. Breathing and Respiration Cellular Aerobic Respiration Efficiency of Respiration Cellular Anaerobic Respiration Respiration of Carbohydrate,
Fig. 9.1 Respiration. Cellular Energy Harvest: an Overview Stages of Aerobic Cellular Respiration –Glycolysis –Oxidation of Pyruvate –Krebs Cycle –Electron.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Ch 9 Cellular Respiration Extracting usable energy from organic molecules.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
 Organisms must take in energy from outside sources.  Energy is incorporated into organic molecules such as glucose in the process of photosynthesis.
Chp 9: Cellular Respiration. Figure 9-01 LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 9 – Cellular Respiration Overview: Life Is Work Living cells – Require.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Please put your test corrections in the appropriate file on the table by the door. (Please staple your corrections to your test packet.) Also, please get.
Cellular Respiration A.P. Biology.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Catabolic Pathways and Production of ATP C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: Life Is Work Living cells require energy from outside sources Some animals,
10/18/11 Chapter 9: Cellular Respiration. The Principle of Redox Chemical reactions that transfer electrons between reactants are called oxidation- reduction.
Cellular Respiration: Harvesting Chemical Energy
LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP powers most.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates.
BSC Exam I Lectures and Text Pages I. Intro to Biology (2-29) II. Chemistry of Life – Chemistry review (30-46) – Water (47-57) – Carbon (58-67)
Cellular Respiration: Harvesting Chemical Energy Chapter 9.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Overview: The Energy of Life The living cell
Cellular Respiration: Harvesting Chemical Energy
LE 8-8 Phosphate groups Ribose Adenine. Using Hydrolysis to break the phosphate bond.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint TextEdit Slides for Biology, Seventh Edition Neil Campbell and Jane.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2 + H 2 O Cellular respiration in mitochondria Organic molecules + O 2 ATP powers most cellular.
© 2014 Pearson Education, Inc. Figure 7.1. © 2014 Pearson Education, Inc. Figure 7.2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2  H 2.
Chapter 9: Cellular Respiration: Harvesting Chemical Energy.
1 Cellular Respiration: Harvesting Chemical Energy.
Cell Respiration-Introduction Energy needed to keep the entropy of the cell low Importance of ATP Autotrophs and heterotrophs-similarities and differences.
Fig. 9-1 Chapter 9 Cellular Respiration: Harvesting Chemical Energy.
Cellular Respiration in DETAIL H. Biology. The Stages of Cellular Respiration Respiration is a cumulative process of 3 metabolic stages 1. Glycolysis.
The Cellular Respiration
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Connecting Cellular Respiration and Photosynthesis Living cells require energy from outside sources Some animals, such as chimpanzees, obtain energy by.
Figure LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP.
Cellular Respiration.
Aerobic Cellular Respiration
Fig. 9-1.
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Chapter 7: Cellular Respiration pages
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration Remember: In order for cells to survive, it must have energy to do work!!! ATP is the energy that’s available to do work! How does.
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration and Fermentation
Cellular Respiration and Fermentation
Harvesting Energy from Organic Molecules
Glycolysis occurs in the cytoplasm and has two major phases:
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration Video
Chapter 9 Cellular Respiration.
AP Biology Ch. 9 Cellular Respiration
Fig. 9-1 Figure 9.1 How do these leaves power the work of life for the giant panda?
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration.
Energy in food is stored as carbohydrates (such as glucose), proteins & fats. Before that energy can be used by cells, it must be released and transferred.
Presentation transcript:

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 9.1 Cellular respiration – Is the most prevalent and efficient catabolic pathway – Consumes oxygen and organic molecules such as glucose – Yields ATP

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Redox Reactions: Oxidation and Reduction Redox reactions – Transfer electrons from one reactant to another by and

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings In oxidation – A substance electrons, or is oxidized In reduction – A substance electrons, or is reduced

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Examples of redox reactions Na + Cl Na + + Cl – becomes oxidized (loses electron) becomes reduced (gains electron)

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Oxidation of Organic Fuel Molecules During Cellular Respiration During cellular respiration – Glucose is oxidized and oxygen is reduced – Glucose is oxidized in a series of steps + 6O 2 6CO 2 + 6H 2 O + Energy becomes oxidized becomes reduced

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Electrons from organic compounds Are usually first transferred to NAD + H O O OO–O– O O O–O– O O O P P CH 2 HO OH H H HOOH HO H H N+N+ C NH 2 H N H N N Nicotinamide (oxidized form) NH 2 + 2[H] (from food) Dehydrogenase Reduction of NAD + Oxidation of NADH 2 e – + 2 H + 2 e – + H + NADH O H H N C + Nicotinamide (reduced form) N Figure 9.4

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings the reduced form of NAD + – Passes the electrons to the electron transport chain

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The electron transport chain Passes electrons in a series of steps Uses the energy from the electron transfer to form ATP

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Stages of Cellular Respiration: A Preview Respiration is a cumulative function of three metabolic stages – Glycolysis – The citric acid cycle – Oxidative phosphorylation (takes place in the electron transport chain)

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Glycolysis – Breaks down glucose into two molecules of The Citric Acid Cycle – Completes the energy yielding oxidation of organic molecules

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Oxidative phosphorylation – Is driven by the electron transport chain – Generates ATP

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings An overview of cellular respiration Figure 9.6 Electrons carried via NADH Glycolsis Glucose Pyruvate ATP Substrate-level phosphorylation Electrons carried via NADH and FADH 2 Citric acid cycle Oxidative phosphorylation: electron transport and chemiosmosis ATP Substrate-level phosphorylation Oxidative phosphorylation Mitochondrion Cytosol

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Both glycolysis and the citric acid cycle Can generate ATP by phosphorylation Figure 9.7 Enzyme ATP ADP Product Substrate P +

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 9.2: Glycolysis harvests energy by oxidizing glucose to pyruvate Glycolysis – Means “splitting of sugar” – Breaks down glucose into – Occurs in the cytoplasm of the cell

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Glycolysis consists of two major phases – Energy investment phase – Energy payoff phase

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Dihydroxyacetone phosphate Glyceraldehyde- 3-phosphate H H H H H OH HO CH 2 OH H H H H O H OH HO OH P CH 2 O P H O H HO H CH 2 OH P O CH 2 O O P HO H H OH O P CH 2 C O CH 2 OH H C CHOH CH 2 O O P ATP ADP Hexokinase Glucose Glucose-6-phosphate Fructose-6-phosphate ATP ADP Phosphoglucoisomerase Phosphofructokinase Fructose- 1, 6-bisphosphate Aldolase Isomerase Glycolysis CH 2 OH Oxidative phosphorylation Citric acid cycle Figure 9.9 A Energy investment phase

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings 2 NAD + NADH H + Triose phosphate dehydrogenase 2 P i 2 P C CHOH O P O CH 2 O 2 O–O– 1, 3-Bisphosphoglycerate 2 ADP 2 ATP Phosphoglycerokinase CH 2 OP 2 C CHOH 3-Phosphoglycerate Phosphoglyceromutase O–O– C C CH 2 OH H O P 2-Phosphoglycerate 2 H 2 O 2 O–O– Enolase C C O P O CH 2 Phosphoenolpyruvate 2 ADP 2 ATP Pyruvate kinase O–O– C C O O CH Pyruvate O Figure 9.8 B Energy payoff phase

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 9.3: The citric acid cycle completes the energy- yielding oxidation of organic molecules The citric acid cycle – Takes place in the

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Before the citric acid cycle can begin Pyruvate must first be converted to which links the cycle to glycolysis CYTOSOLMITOCHONDRION NADH + H + NAD CO 2 Coenzyme A Pyruvate Acetyle CoA S CoA C CH 3 O Transport protein O–O– O O C C CH 3 Figure 9.10

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 9.12 Acetyl CoA NADH Oxaloacetate Citrate Malate Fumarate Succinate Succinyl CoA  -Ketoglutarate Isocitrate Citric acid cycle SCoA SH NADH FADH 2 FAD GTP GDP NAD + ADP P i NAD + CO 2 CoA SH CoA SH CoA S H2OH2O + H + H2OH2O C CH 3 O OCCOO – CH 2 COO – CH 2 HO C COO – CH 2 COO – CH 2 HCCOO – HOCH COO – CH CH 2 COO – HO COO – CH HC COO – CH 2 COO – CH 2 CO COO – CH 2 CO COO – Glycolysis Oxidative phosphorylation NAD + + H + ATP Citric acid cycle Figure 9.12 Citric Acid Cycle

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 9.4: During oxidative phosphorylation, couples electron transport to ATP synthesis NADH and FADH 2 – Donate electrons to the electron transport chain, which powers ATP synthesis via

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings At the end of the chain In aerobic cellular respiration, electrons are passed to forming water

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chemiosmosis: The Energy-Coupling Mechanism – Is the enzyme that actually makes ATP INTERMEMBRANE SPACE H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ P i + ADP ATP MITOCHONDRIAL MATRIX Figure 9.14

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings At certain steps along the electron transport chain Electron transfer causes protein complexes to pump H + from the mitochondrial matrix to the intermembrane space

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The resulting H + gradient Stores energy Drives chemiosmosis in ATP synthase Chemiosmosis – Is an energy-coupling mechanism that uses energy in the form of a across a membrane to drive cellular work

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chemiosmosis and the electron transport chain Oxidative phosphorylation. electron transport and chemiosmosis Glycolysis ATP Inner Mitochondrial membrane H+H+ H+H+ H+H+ H+H+ H+H+ ATP P i Protein complex of electron carners Cyt c I II III IV (Carrying electrons from, food) NADH + FADH 2 NAD + FAD + 2 H / 2 O 2 H2OH2O ADP + Electron transport chain Electron transport and pumping of protons (H + ), which create an H + gradient across the membrane Chemiosmosis ATP synthesis powered by the flow Of H + back across the membrane ATP synthase Q Oxidative phosphorylation Intermembrane space Inner mitochondrial membrane Mitochondrial matrix Figure 9.15

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings An Accounting of ATP Production by Cellular Respiration During respiration, in general, electron flow takes place in this sequence – Glucose to NADH to electron transport chain to oxygen – The ultimate product is, of course,

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings There are three main processes in this metabolic enterprise Electron shuttles span membrane CYTOSOL 2 NADH 2 FADH 2 2 NADH 6 NADH 2 FADH 2 2 NADH Glycolysis Glucose 2 Pyruvate 2 Acetyl CoA Citric acid cycle Oxidative phosphorylation: electron transport and chemiosmosis MITOCHONDRION by substrate-level phosphorylation by substrate-level phosphorylation by oxidative phosphorylation, depending on which shuttle transports electrons from NADH in cytosol Maximum per glucose: About 36 or 38 ATP + 2 ATP + about 32 or 34 ATP or Figure 9.16

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 9.5: enables some cells to produce ATP without the use of oxygen Fermentation consists of – Glycolysis plus reactions that regenerate which can be reused by glyocolysis

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Fermentation 2 ADP + 2 P1P1 2 ATP Glycolysis Glucose 2 NAD + 2 NADH 2 Pyruvate 2 Acetaldehyde 2 Ethanol (a) Alcohol fermentation 2 ADP + 2 P1P1 2 ATP Glycolysis Glucose 2 NAD + 2 NADH 2 Lactate (b) Lactic acid fermentation H H OH CH 3 C O – O C CO CH 3 H CO O–O– CO CO O CO C OHH CH 3 CO 2 2 Figure 9.17

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings In alcohol fermentation – Pyruvate is converted to ethanol in two steps; CO 2 is a by-product During lactic acid fermentation – Pyruvate is reduced directly by NADH to form lactate as a waste product

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings 2 ADP + 2 P1P1 2 ATP Glycolysis Glucose 2 NAD + 2 NADH 2 Pyruvate 2 Acetaldehyde 2 Ethanol (a) Alcohol fermentation 2 ADP + 2 P1P1 2 ATP Glycolysis Glucose 2 NAD + 2 NADH 2 Lactate (b) Lactic acid fermentation H H OH CH 3 C O – O C CO CH 3 H CO O–O– CO CO O CO C OHH CH 3 CO 2 2 Figure 9.17 Alcohol and Lactic Acid Fermentation 2 Pyruvate

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Fermentation and Cellular Respiration Compared Both fermentation and cellular respiration – Use to oxidize glucose and other organic fuels to pyruvate The final electron acceptor in – fermentation is an organic molecule – cellular respiration is an oxygen Cellular respiration – Produces a lot more ATP

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Pyruvate is a key juncture in catabolism Glucose CYTOSOL Pyruvate No O 2 present Fermentation O 2 present Cellular respiration Ethanol or lactate Acetyl CoA MITOCHONDRION Citric acid cycle Figure 9.18

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 9.6: The catabolism of various molecules from food Amino acids Sugars Glycerol Fatty acids Glycolysis Glucose Glyceraldehyde-3- P Pyruvate Acetyl CoA NH 3 Citric acid cycle Oxidative phosphorylation Fats Proteins Carbohydrates Figure 9.19