Properties of Pure Substances Chapter 3
Why do we need physical properties? As we analyze thermodynamic systems we describe them using physical properties Those properties become the input to the equations we’ll use to solve thermodynamic problems
Pure Substance In Chemistry you defined a pure substance as an element or a compound Something that can not be separated In Thermodynamics we’ll define it as something that has a fixed chemical composition throughout
Examples Ice in equilibrium with pure water Air Air in equilibrium with liquid air is not a pure substance – Why?
Phases of Pure Substances We all have a pretty good idea of what the three phases of matter are, but a quick review will help us understand the phase change process
Solid Long range order Three dimensional pattern Large attractive forces between atoms or molecules The atoms or molecules are in constant motion – they vibrate in place The higher the temperature – the more vibration This image is the property of IBM Platinum Atoms
Liquid When a solid reaches a high enough temperature the vibrations are strong enough that chunks of the solid break of and move past each other Short range order Inside the chunks the atoms or molecules look a lot like a solid Ex. You only break 5% to 15% of the water hydrogen bonds to go from solid to liquid Norway/Norway_Jostedalsbreen_Glacier4.html
Gas Molecules are far apart No long or short range order High kinetic energy In order to liquefy, lots of that kinetic energy must be released ONLINE_LESSONS/WEATHER/
Solid to Liquid to Gas On a molecular level, the difference between the phases is really a matter of degree We identify melting points and vaporization points based on changes in properties Ex – big change in specific volume
Consider what happens when we heat water at constant pressure Piston cylinder device – maintains constant pressure
T v Liquid to Gas Phase Change
Two Phase Region Compressed Liquid Superheated Gas
Critical Point
Above the critical point there is no sharp difference between liquid and gas!!
Pressure-volume diagram
Property Diagrams So far we have sketched T – v diagram P – v diagram What about the P – T diagram?
Property Diagrams
Combine all three You can put all three properties P T V On the same diagram
3 Dimensional Phase Diagrams Expands on Freezing Contracts on Freezing
State Postulate The state of a simple compressible system is completely specified by two independent, intensive properties
State Postulate Remember that during a phase change, Temperature and Pressure are not independent
Property Tables P - pressure T - temperature v – specific volume u – specific internal energy h – specific enthalpy h = u + Pv s – specific entropy -define in Chapter 7
A word about enthalpy Enthalpy is a combination property h=u+Pv H=U+PV It is useful because it makes some equations easier to solve You could do all of thermodynamics without it – but its more convenient to use it.
Saturated Liquid and Saturated Vapor States
Saturation Properties Saturation Pressure is the pressure at which the liquid and vapor phases are in equilibrium at a given temperature. Saturation Temperature is the temperature at which the liquid and vapor phases are in equilibrium at a given pressure.
Table A-4 and A-5 A-4 pg 890 Saturated water temperature table A-5 pg 892 Saturated water pressure table
g stands for gas f stands for fluid fg stands for the difference between gas and fluid Transitions from liquid to gas
Quality Fraction of the material that is gas x = 0 the material is all saturated liquid x = 1 the material is all saturated gas x is not meaningful when you are out of the saturation region
Quality X = 0X = 1
Average Properties When x = 0 we have all liquid, and y = y f 0 When x = 1 we have all gas, and y = y f + y fg = y g 1 = y g
Superheated Properties Table A-6, pg 894
Compressed Liquid We only need to adjust h if there is a big difference in pressure
Linear Interpolation AB X
Equations of State
Equations vs Tables The behavior of many gases (like steam) is not easy to predict with an equation That’s why we have tables like A-4, A- 5 and A-6 Other gases (like air) follow the ideal gas law – we can calculate their properties
Ideal Gas Law PV=nRT Used in your Chemistry class From now on we will refer to the gas constant, R, as the universal gas constant, R u, and redefine R=R u /MW PV=mRT R is different for every gas Tabulated in the back of the book PV=nR u T
Ideal Gas Law v = V/m Pv = RT This is the form we will use the most Relates 3 properties P, v and T
When does the ideal gas law apply? The ideal gas equation of state can be derived from basic principles if one assumes: 1. Intermolecular forces are small 2. Volume occupied by the particles is small These assumptions are true when the molecules are far apart – ie when the gas is not dense
Criteria The ideal gas law applies when the pressure is low, and the temperature is high - compared to the critical values The critical values are tabulated in the Appendix
Is Steam an Ideal Gas?
Compressibility Factor You can adjust the ideal gas law with a fudge factor, called the compressibility factor Pv = z RT z is just a value you put in to make it work out z = 1 for ideal gases
Principle of Corresponding States The Z factor is approximately the same for all gases at the same reduced temperature and reduced pressure
Comparison of z factors
What do you do when P or T is unknown? Check out Appendix A-15 pg 908
Other Equations of State Van der Waals
Beattie-Bridgeman
Benedict-Webb-Rubin
Percentage Error for Nitrogen
Summary In this Chapter we learned How the state of a substance changes with Temperature and Pressure How to read and use property tables When we can use the ideal gas law Alternative equations of state