Handouts Syllabus Safety (detailed) Web page is up and running
Knowing Nernst: Non-equilibrium copper redox chemistry
Safety / Waste disposal There will only be one liquid waste disposal bottle (kept in the hood by the lab entrance), since all reactions are carried out in aqueous solution. There should be a separate waste bottle for solid waste.
Knowing Nernst: Non-equilibrium copper redox chemistry Objectives: (1)Calculate/measure stability of copper complexes (2)Use ligands to change stabilities of metal species HSAB concept: qualitative insights Redox potentials/Nernst eqn: quantitative insights
Chemical species studies CuCl 2 CuI Cu(NH 3 ) 2+ Cu(en) 2 2+ Cu(salen) n+ Charge vs oxidation state
Oxidation states Sum of oxidation states = ionic charge on species Assumes unequal sharing of electrons –more electronegative atom gets all of bond electrons
Oxidation states Sum of oxidation states = ionic charge on species Assumes unequal sharing of electrons –more electronegative atom gets all of bond electrons Examples: –MnO, Mn 2 O 3, Mn 3 O 4, MnO 2, Mn 5 O 8, KMnO 4 What differences are found between compounds with difference oxidation numbers? Atomic radius Reactivity (redox potential)
Disproportionation 2 Fe 4+ →Fe 3+ + Fe 5+ 2 H 2 O 2 → 2 H 2 O + O 2 2 Cu + →Cu 0 + Cu 2+ Reverse of process: comproportionation
Sample redox potential calculation CuCl 2 + ammonia -> Cu(NH 3 ) chloride (1) Cu 2+ + Iˉ + eˉ CuI0.86V (2)Cu 2+ + Clˉ + eˉ CuCl0.54V (3)I 2 + 2eˉ 2Iˉ0.54V (4)Cu + (aq) + eˉ Cu(s)0.52V (5)Cu 2+ (aq) + 2eˉ Cu(s)0.37V (6)CuCl + eˉ Cu(s) + Clˉ0.14V (7)Cu(NH 3 ) eˉ Cu(s) + 4NH V (8) Cu 2+ (aq) + eˉ Cu + (aq)-0.15V (9)CuI + eˉ Cu(s) + Iˉ-0.19V (10)Cu(en) eˉ Cu + 2en-0.50V
Reduction:Cu 2+ (aq) + 2eˉ Cu(s)E0 = +0.37V(5) Oxidation:Cu(s) + 4NH 3 Cu(NH 3 ) eˉE0 = +0.12V(7*) Net:Cu 2+ (aq) + 4NH 3 Cu(NH 3 )= 2+ E0 = +0.49V
Hard vs. soft Describes the general bonding trends of chemical species (Lewis acids / Lewis bases) Hard acids prefer to bind to hard bases, while soft acids prefer to bind to soft bases
K stability = [AB] / [A][B] softerharder most stable complexes least stable complexes Monotonic variation in stability Only two possible trends
Hard: low polarizability, primarily ionic bonding Soft: high polarizability, primarily covalent bonding
Lewis acids and bases Hard acids H +, Li +, Na +, K +, Rb +, Cs + Be 2+, Mg 2+, Ca 2+, Sr 2+, Ba 2+ BF 3, Al 3+, Si 4+, BCl 3, AlCl 3 Ti 4+, Cr 3+, Cr 2+, Mn 2+ Sc 3+, La 3+, Ce 4+, Gd 3+, Lu 3+, Th 4+, U 4+, Ti 4+, Zr 4+, Hf 4+, VO 4+, Cr 6+, Si 4+, Sn 4+ Borderline acids Fe 2+, Co 2+, Ni 2+, Cu 2+, Zn 2+ Rh 3+, Ir 3+, Ru 3+, Os 2+ R 3 C +, Sn 2+, Pb 2+ NO +, Sb 3+, Bi 3+ SO 2 Soft acids Tl +, Cu +, Ag +, Au +, Cd 2+ Hg 2+, Pd 2+, Pt 2+, M 0, RHg +, Hg 2 2+ BH 3 CH 2 HO +, RO + Hard bases F -, Cl - H 2 O, OH -, O 2- CH 3 COO -, ROH, RO -, R 2 O NO 3-, ClO 4- CO 3 2-, SO 4 2-, PO 4 3- NH 3, RNH 2 N 2 H 4 Borderline bases Br - NO 2-, N 3- SO 3 2- C 6 H 5 NH 2, pyridine N 2 Soft bases H -, I - H 2 S, HS -, S 2-, RSH, RS-, R 2 S SCN - (bound through S), CN -, RNC, CO R 3 P, C 2 H 4, C 6 H 6 (RO) 3 P
Topics: Nernst equation (Electrochemistry problems)
Hard/soft references R.G. Pearson, Inorg. Chem., 27, p734 (1988). R.G. Pearson, JACS, 85, p3533 (1963) R.G. Pearson, J. Chem. Ed., 45, p581 AND p643 (1968) R.G. Pearson, J. Chem. Ed. 64 (7): JUL 1987 [471 cites] Hard and soft acids and bases, Ralph G. Pearson, editor. (1973) 480pp Hard and soft acids and bases {principle} in organic chemistry, T. L. Ho (1977) 209pp