To find the geometric mean between 2 numbers

Slides:



Advertisements
Similar presentations
8-1 Similarity in Right Triangles
Advertisements

Similarity in Right Triangles
Geometric Mean Theorem I
9.1 Similar Right Triangles. Theorem If an altitude is drawn to the hypotenuse of a Right triangle, then it makes similar triangles to the original Right.
7.1 Geometric Mean.  Find the geometric mean between two numbers  Solve problems involving relationships between parts of right triangles and the altitude.
Altitudes Recall that an altitude is a segment drawn from a vertex that is perpendicular to the opposite of a triangle. Every triangle has three altitudes.
Objectives Use geometric mean to find segment lengths in right triangles. Apply similarity relationships in right triangles to solve problems.
APPLYING RIGHT TRIANGLES AND TRIGONOMETRY. OBJECTIVE: SWBAT… FIND THE GEOMETRIC MEAN BETWEEN 2 NUMBERS SOLVE PROBLEMS INVOLVING RELATIONSHIPS BETWEEN.
Objectives Use geometric mean to find segment lengths in right triangles. Apply similarity relationships in right triangles to solve problems.
Geometric Mean & the Pythagorean Thm. Section 7-1 & 7-2.
MA.912.T.2.1 CHAPTER 9: RIGHT TRIANGLES AND TRIGONOMETRY.
7.4 Similarity in Right Triangles
Section 7.4 Similarity in Right Triangles. Geometric Mean The positive number of x such that ═
9.3 Altitude-On-Hypotenuse Theorems Objective: After studying this section, you will be able to identify the relationships between the parts of a right.
7.4 Similarity in Right Triangles In this lesson we will learn the relationship between different parts of a right triangle that has an altitude drawn.
Proportions in Right Triangles Theorem 7.1 The altitude to the hypotenuse of a right triangle forms two triangles similar to it and each other.  ABC~
Section 8-1 Similarity in Right Triangles. Geometric Mean If a, b, and x are positive numbers and Then x is the geometric mean. x and x are the means.
7.4 Similarity in Right Triangles
Mean Proportional.
Honors Geometry Warm-up 1/30 Ashwin is watching the Super Bowl on a wide screen TV with dimensions 32” by 18” while Emily is watching it on an old square.
7-4 Similarity in Right Triangles
Section 9.1 Similar Right Triangles OBJECTIVE: To find and use relationships in similar right triangles BIG IDEAS: REASONING AND PROOF VISUALIZATIONPROPORTIONALITY.
Chapter 7.4.  The altitude is the Geometric Mean of the Segments of the Hypotenuse.
8.4: Similarity in Right Triangles Objectives: Students will be able to… Find the geometric mean between 2 numbers Find and use relationships between similar.
9.1 (old geometry book) Similar Triangles
9.3 Altitude-On-Hypotenuse Theorems (a.k.a Geometry Mean)
Geometric and Arithmetic Means
Right Triangles and Trigonometry Chapter Geometric Mean  Geometric mean: Ex: Find the geometric mean between 5 and 45 Ex: Find the geometric mean.
Warm Up Week 7. Section 9.1 Day 1 I will solve problems involving similar right triangles. Right Triangle – Altitude to Hypotenuse If the altitude.
Similar Right Triangle Theorems Theorem 8.17 – If the altitude is drawn to the hypotenuse if a right triangle, then the two triangles formed are similar.
Chapter 8 Lesson 4 Objective: To find and use relationships in similar right triangles.
Geometric Mean and the Pythagorean Theorem
Warm Up 1.Name a chord 2.What term describes
Use Similar Right Triangles
Warm-up On a blank piece of paper compute the following perfect squares.. xx2x ……
Similar Right triangles Section 8.1. Geometric Mean The geometric mean of two numbers a and b is the positive number such that a / x = x / b, or:
9.3 Altitude-On-Hypotenuse Theorems (a.k.a Geometry Mean)
NOTES GEOMETRIC MEAN / SIMILARITY IN RIGHT TRIANGLES I can use relationships in similar right triangles.
9.3 Similar Right Triangles. Do Now: Draw the altitude and describe what it is.
7.4 Notes Similarity in Right Triangles. Warm-up:
Chapter 9: Right Triangles and Trigonometry Section 9.1: Similar Right Triangles.
Chapter 9: Right Triangles and Trigonometry Lesson 9.1: Similar Right Triangles.
Geometry 6.4 Geometric Mean.
Lesson 7.3 Using Similar Right Triangles Students need scissors, rulers, and note cards. Today, we are going to… …use geometric mean to solve problems.
7-1: Geometric Mean. Geometric Mean Given two numbers a and b, you can find the geometric mean by solving the proportion: The geometric mean of two numbers.
8-1 Geometric Mean The student will be able to: 1.Find the geometric mean between two numbers. 2.Solve problems involving relationships between parts of.
Geometric Mean 7.1.
Right Triangles and Trigonometry
Geometric Mean Pythagorean Theorem Special Right Triangles
Similarity in Right Triangles
Warm Up.
Similar Right Triangles
Chapter 7.3 Notes: Use Similar Right Triangles
Similar Right Triangles: Geometric Mean
9.3 Warmup Find the value of x and y
7.3 Use Similar Right Triangles
9.3 Altitude-On-Hypotenuse Theorems
Lesson 50 Geometric Mean.
Altitudes–On- Hypotenuse Theorem
Similar Right Triangles
Objectives Students will learn how to use geometric mean to find segment lengths in right triangles and apply similarity relationships in right triangles.
Similar Right Triangles
DO NOW.
Chapter 8 Section 1 Recall the rules for simplifying radicals:
Geometric Mean Pythagorean Theorem Special Right Triangles
8.1 Geometric Mean The geometric mean between two numbers is the positive square root of their product. Another way to look at it… The geometric mean is.
Using Similar Right Triangles
Geometric Mean and the Pythagorean Theorem
Similar Right Triangles
Right Triangles with an altitude drawn.
Presentation transcript:

To find the geometric mean between 2 numbers What you’ll learn: To find the geometric mean between 2 numbers To solve problems involving relationships between parts of a right triangle and the altitude to its hypotenuse.

Geometric Mean For 2 positive numbers a and b, the geometric mean is the positive number x where the proportion a:x=x:b is true, also written as or with cross products as The geometric mean between 2 numbers is the positive square of their product. Ex: find the geometric mean between each pair of numbers. 2 and 50 25 and 7

Theorem 7.1 If the altitude is drawn from the vertex of the right angle of a right triangle to its hypotenuse, then the 2 triangles formed are similar to the given triangle and to each other. ADB~BDC ADB~ABC CDB~CBA A B C D

Theorem 7.2 The measure of an altitude drawn from the vertex of the right angle of a right triangle to its hypotenuse is the geometric mean between the measures of the 2 segments of the hypotenuse. b c d a e f

Theorem 7.3 If the altitude is drawn from the vertex of the right angle of a right triangle to its hypotenuse, then the measure of a leg of the triangle is the geometric mean between the measures of the hypotenuse and the segment of the hypotenuse adjacent to that leg. b c d a e f

Find x, y, and/or z 1. 2. 3. 4. A B C D x 2 14 y A B C D x 4 8 y A B C 17 6 x y z A B C D 20 x y 10 z

Homework p.346 14-34 even Quiz tomorrow on 7.1