IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L 1 THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L July.

Slides:



Advertisements
Similar presentations
GNU APPLICATIONS IN RADAR
Advertisements

Validation of radiometric models and simulated KaRIn/SWOT data based on ground and airborne acquisitions Page de titre, mentionner contributions Altamira.
On The Use of Polarimetric Orientation for POLSAR Classification and Decomposition Hiroshi Kimura Gifu University, Japan IGARSS 2011 Vancouver, Canada.
IGARSS 2011, July , Vancouver, Canada Demonstration of Target Vibration Estimation in Synthetic Aperture Radar Imagery Qi Wang 1,2, Matthew Pepin.
7. Radar Meteorology References Battan (1973) Atlas (1989)
Third Edition By : Merrill I. Skolnik
ElectroScience Lab Studies of Radio Frequency Interference in SMOS Observations IGARSS 2011 Joel T. Johnson and Mustafa Aksoy Department of Electrical.
Folie 1 Ambiguity Suppression by Azimuth Phase Coding in Multichannel SAR Systems DLR - Institut für Hochfrequenztechnik und Radarsysteme F. Bordoni, M.
Folie 1 Performance Investigation on the High-Resolution Wide-Swath SAR System Operating in Stripmap Quad-Pol and Ultra-Wide ScanSAR Mode DLR - Institut.
Remote Sensing Technology Institute Extraction of the surface velocity of rivers with SAR- ATI H. Runge 1, S. Suchandt 1, R. Horn 2, T. Eiglsperger 3 German.
T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A 20 Dec 2005Bistatic SAR Imaging using Non-Linear Chirp Scaling 1 Bistatic SAR imaging using.
T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A 1 out of 55 University of Siegen Extra Illustrations By Y. L. Neo Supervisor : Prof. Ian Cumming.
Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute.
Use of FOS to Improve Airborne Radar Target Detection of other Aircraft Example PDS Presentation for EEE 455 / 457 Preliminary Design Specification Presentation.
Spaceborne Weather Radar
ElectroScience Lab IGARSS 2011 Vancouver Jul 26th, 2011 Chun-Sik Chae and Joel T. Johnson ElectroScience Laboratory Department of Electrical and Computer.
slide 1 German Aerospace CenterMicrowaves and Radar Institute Extraction of clear-air wind Dr. Thomas Börner DLR Oberpfaffenhofen.
IGARSS 2011 – July, Vancouver, Canada Investigating the seismic cycle in Italy by multitemporal analysis of ALOS, COSMO-SkyMed and ERS/Envisat DInSAR.
RADAR Detection of Extensive Air Showers Nils Scharf III. Physikalisches Institut A Bad Honnef Nils Scharf III. Physikalisches Institut A Bad.
A New Method of Through Wall Moving Target Detection and Imaging using UWB-SP Radar Shiyou Wu, Yanyun Xu, Jie Chen, Shengwei Meng, Guangyou Fang, Hejun.
Remote Sensing Microwave Remote Sensing. 1. Passive Microwave Sensors ► Microwave emission is related to temperature and emissivity ► Microwave radiometers.
© R.S. Lab, UPC IGARSS, Vancouver, July, 2011 OIL SLICKS DETECTION USING GNSS-R E. Valencia, A. Camps, H. Park, N. Rodríguez-Alvarez, X. Bosch-Lluis.
IGARSS’11 Compact Polarimetry Potentials My-Linh Truong-Loï, Jet Propulsion Laboratory / California Institue of Technology Eric Pottier, IETR, UMR CNRS.
Imaging results from monostatic and bistatic radar observations of the Moon made at a wavelength of 68 cm (440.2 MHz) with the Millstone MISA radar transceiving.
Kenneth H. Underwood Atmospheric Systems Corporation Santa Clarita, CA NAQC 2011 San Diego1.
WMO/ITU Seminar Use of Radio Spectrum for Meteorology Earth Exploration-Satellite Service (EESS)- Active Spaceborne Remote Sensing and Operations Bryan.
Junjie Wu, Jianyu Yang, et.al. Univ. of Electro. Sci. & Tech. of China
DOCUMENT OVERVIEW Title: Fully Polarimetric Airborne SAR and ERS SAR Observations of Snow: Implications For Selection of ENVISAT ASAR Modes Journal: International.
SHIP DETECTION USING X BAND DUAL-POL SAR DATA S. Angelliaume (ONERA) Ph. Durand, J.C. Souyris (CNES)
GISMO Simulation Study Objective Key instrument and geometry parameters Surface and base DEMs Ice mass reflection and refraction modeling Algorithms used.
Jul. 29, 2011IGARSS [3118] RELATION BETWEEN ROCK FAILURE MICROWAVE SIGNALS DETECTED BY AMSR-E AND A DISTRIBUTION OF RUPTURES GENERATED BY SEISMIC.
Study Design and Summary Atmospheric boundary layer (ABL) observations were conducted in Sapporo, Japan from April 2005 to July Three-dimensional.
SWOT Near Nadir Ka-band SAR Interferometry: SWOT Airborne Experiment Xiaoqing Wu, JPL, California Institute of Technology, USA Scott Hensley, JPL, California.
Nobuo Kumagae, Kazuo Kawamura, Kenji Tatsumi, Masatada Furuhata,
Spaceborne 3D Imaging Lidar John J. Degnan Geoscience Technology Office, Code Code 900 Instrument and Mission Initiative Review March 13, 2002.
1 Nonlinear Range Cell Migration (RCM) Compensation Method for Spaceborne/Airborne Forward-Looking Bistatic SAR Nonlinear Range Cell Migration (RCM) Compensation.
Synthetic Aperture Radar Specular or Bragg Scatter? OC3522Summer 2001 OC Remote Sensing of the Atmosphere and Ocean - Summer 2001.
ESTIMATION OF OCEAN CURRENT VELOCITY IN COASTAL AREA USING RADARSAT-1 SAR IMAGES AND HF-RADAR DATA Moon-Kyung Kang 1, Hoonyol Lee 2, Chan-Su Yang 3, Wang-Jung.
IEEE IGARSS Vancouver, July 27, 2011 On the potential of TanDEM-X for the retrieval of agricultural crop parameters by single-pass PolInSAR Juan M. Lopez-Sanchez.
Napoli, – USEReST 2008 VOLCANO MONITORING VIA FRACTAL MODELING OF LAVA FLOWS Gerardo DI MARTINO Antonio IODICE Daniele RICCIO Giuseppe RUELLO.
Christian N. Koyama University of Cologne IGARSS 2011 Vancouver, July 26 Soil Moisture Retrieval Under Vegetation Using Dual Polarized PALSAR Data Christian.
PARALLEL FREQUENCY RADAR VIA COMPRESSIVE SENSING
GISMO Simulation Status Objective Radar and geometry parameters Airborne platform upgrade Surface and base DEMs Ice mass reflection and refraction modeling.
Page 1 ASAR Validation Review - ESRIN – December 2002 IM and WS Mode Level 1 Product quality update F Introduction F IM Mode Optimisation F Updated.
SEA ICE CHARACTERISTICS IN THE SOUTHERN REGION OF OKHOTSK SEA OBSERVED BY X- AND L- BAND SAR Hiroyuki Wakabayashi (Nihon university) Shoji Sakai (Nihon.
Page 1 ASAR Validation Review - ESRIN – December 2002 Advanced Technology Centre ASAR APP & APM Image Quality Peter Meadows & Trish Wright  Properties.
Chongwen DUAN, Weidong HU, Xiaoyong DU ATR Key Laboratory, National University of Defense Technology IGARSS 2011, Vancouver.
1 A conical scan type spaceborne precipitation radar K. Okamoto 1),S. Shige 2), T. Manabe 3) 1: Tottori University of Environmental Studies, 2: Kyoto University.
RADAR.  Go through intro part of LeToan.pdfhttp://earth.esa.int/landtraining07/D1LA1- LeToan.pdf.
M. Iorio 1, F. Fois 2, R. Mecozzi 1; R. Seu 1, E. Flamini 3 1 INFOCOM Dept., Università “La Sapienza”, Rome, Italy, 2 Thales Alenia Space Italy, Rome,
IGARSS’ July, Vancouver, Canada Subsidence Monitoring Using Polarimetric Persistent Scatterers Interferometry Victor D. Navarro-Sanchez and Juan.
DISPLACED PHASE CENTER ANTENNA SAR IMAGING BASED ON COMPRESSED SENSING Yueguan Lin 1,2,3, Bingchen Zhang 1,2, Wen Hong 1,2 and Yirong Wu 1,2 1 National.
Camp Sentinel II Radar System [4] -Installed outside US Army Camp in Vietnam in Antenna Dimensions: 3.5 m diameter x 1 m tall antenna. -2 kW.
Visit for more Learning Resources
RENISH THOMAS (GPM) Global-Precipitation- Mapper
Overview of NovaSAR September 2016.
GEOGRAPHIC INFORMATION SYSTEMS & RS INTERVIEW QUESTIONS ANSWERS
Calibration Activities of GCOM-W/AMSR2
Final exam information
Toshio Okumura (RESTEC), Shin-ichi Sobue (JAXA), Takeo Tadono (JAXA)
Technician Licensing Class
Open book, open notes, bring a calculator
Hiroshi Kimura Gifu University, Japan IGARSS 2011 Vancouver, Canada
Soil Moisture Active Passive (SMAP) Satellite
Chap II. Radar Hardware (PART 1)
Open book, open notes, bring a calculator
Hiroshi Kimura Gifu University, Japan IGARSS 2011 Vancouver, Canada
2011 International Geoscience & Remote Sensing Symposium
A KU-BAND GEOSYNCHRONOUS SYNTHETIC APERTURE RADAR MISSION ANALYSIS WITH MEDIUM TRANSMITTED POWER AND MEDIUM-SIZED ANTENNA Josep Ruiz Rodon, Antoni Broquetas,
Presentation transcript:

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L 1 THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L July 29, 2011 IGARSS 2011, Vancouver, Canada Takashi Fujimura, Hideharu Totsuka, Norihiro Imai, Shingo Matsuo, Tsunekazu Kimura (NEC Corporation) Tomoko Ishi, Yoshitaka Oura (NEC Aerospace Systems, Ltd) Masanobu Shimada (Japan Aerospace Exploration Agency)

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L 2 Contents 1. Introduction 2. Bistatic SAR Experiment 3. Analysis of Image 4. Conclusion

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L 3 1. Introduction Some Spaceborne/airborne bistatic SAR experiments were tried. The first bistatic SAR experiment using spaceborne PALSAR and airborne Pi-SAR-L on February 27th, Background Few reports about bistatic SAR with other than TerraSAR-X. M. Rodriguez-Cassola, etc., “ Bistatic TerraSAR-X / F-SAR Spaceborne-Airborne SAR Experiment: Description, Data Processing, and Results ” IEEE Trans. on G.E., vol.48, No.2 I. Walterscheid, etc., “ Bistatic SAR Experiments With PAMIR and TerraSAR-X - Setup, Processing, and Image Results ”, IEEE Trans. On. G.E. vol.48, No.8 and so on. First report : “ The First Bistatic SAR Experiment with the Spaceborne SAR : PALSAR and the Airborne SAR : Pi-SAR-L ”, SANE, IEICE

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L 4 1. Introduction Pi-SAR-L has NO special function for bistatic SAR observation. (function for receiving time synchronization) Bistatic SAR operation and image processing could succeed only with the followings. The appropriate choice of the experiment conditions The appropriate setting of control parameters of Pi-SAR-L The appropriate image processing method Summary of Experiment Analysis : 3 features of This Bistatic SAR image 1.Higher S/N 2.Lower Az resolution 3.Difference of detected targets

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L 5 2. Bistatic SAR Experiment (1) PALSAR and Pi-SAR-L Spaceborne SAR : Transmitter Freq. : L-band Operation : Jan, 2006 – April, 2011 Res. : 10 / 20 / 30 / 100 m Swath : 70 / 70 / 30 / 350 km Pol. : Single/Dual/Quad/Single Airborne SAR : Receiver Freq.X-bandL-band Operation Res.1.5 or 3m3 - 20m Swath 20 – 40km5 - 40km Pol.Quad Organization JAXANICT ALOS (Daichi) / PALSAR Pi-SAR PALSAR and Pi-SAR-L have no special hardware for the bistatic SAR. Quad

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L 6 2. Bistatic SAR Experiment (2) The Experiment Conditions North South (Descending) ParametersPALSARPi-SAR-L 1Date, TimeFeb. 27th(Sat), :23:17(+/-30sec) (Japan Standard Time) 2AreaAround Okazaki city, Aichi, Japan 3Observation mode High Resolution Experiment mode (Reception only) 4PolarizationHHH 5Height700 km8500 m 6Swath70 km- 7Off-nadir Angle 34.3 degrees 40 degrees 8PRF Hz996.9 Hz 9Velocity7500 m/s200 m/s 10STCOFF 11AGC/MGCMGC 12MGC ATT25dB 13Transmitted Pulse Width 27 micro sec No Transmission 14Transmitted Band Width 28 MHzNo Transmission 15Received Band Width 28 MHz30 MHz PALSAR (transmitter) : FBS mode Pi-SAR-L (receiver) : reception only experiment mode

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L 7 2. Bistatic SAR Experiment (3) The Experiment Area (Okazaki city in Japan) North PALSAR ’ s observation area (c) “Digital Japan” URL Osaka Tokyo Nagoya Kyoto Yahagi-gawa River Oto-gawa RiverTomei Expressway Japan National Route 1 (Tokaido Road) Tokaido Main Line (Railway) Near the center of Japan Important place for transportation in Japan

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L 8 2. Bistatic SAR Experiment (4) Configuration and Result Receiver Signal Processor (A/D) Antenna Recorder Pi-SAR-L Chirp Generator Transmitter Antenna Earth Surface PALSAR The both of the video signal and A/D sampling data had been set adequately. Receiving duty ~50% PRF Hz PRF Hz Video Signal Level TelemetryA/D sampling data (in 1 PRI) Time (UTC) Code ( 1 Code is 2.47mV)

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L 9 2. Bistatic SAR Experiment (5) Bistatic Image PALSAR monostatic SAR imagePALSAR/Pi-SAR-L bistatic SAR image This bistatic SAR image has three features. 1. Higher S/N, 2. Lower Az resolution, 3. Difference of detected targets Az

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L Analysis of Image (1) Higher S/N Note : the images after gamma correction PALSAR monostatic SAR imagePALSAR/Pi-SAR-L bistatic SAR image

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L Analysis of Image (1) Higher S/N Note : the images after gamma correction Road Watercourse Sandbar Difference between sandbars and watercourses appears in bistatic image. but these can not be found in monostatic image. Reason : Received signal level was high because of short distance. Yahagi-gawa River ?? PALSAR monostatic SAR imagePALSAR/Pi-SAR-L bistatic SAR image

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L Analysis of Image (2) Lower Azimuth Resolution The narrow roads in the monostatic SAR image are clearer than the ones in the bistatic SAR image. Az Profile (Next page) Unfortunately the azimuth resolution of the bistatic SAR image seems to be lower than that of the monostatic SAR image. Reason : Pi-SAR-L was not changed for simple feasibility trial. PALSAR monostatic SAR imagePALSAR/Pi-SAR-L bistatic SAR image

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L Analysis of Image (2) Lower Azimuth Resolution The possible reasons belong to the unchanged hardware mainly. 1.The shortage of sampling data  Pi-SAR-L has no function for the receiving time synchronization.  Received data by Pi-SAR-L has about only half of the original signal. 2.The instability of two oscillators of PALSAR and Pi-SAR-L  Oscillators of two SARs have no linkage for synchronization. 3.The relative motion between ALOS and the aircraft  SAR processor has the excellent motion compensation function.  But the influence of the relative motion may be left. Az Resolution is low in bistatic image. The monostatic SAR image : 4.6 m The bistaic SAR image : 8.4 m 8.4m 4.6m Bistatic Monostatic Az Profile

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L Analysis of Image (3) Difference of Detected Targets There are large differences of image at the yellow circles. Reason : The incidence angles were different and/or S/N was high. PALSAR monostatic SAR imagePALSAR/Pi-SAR-L bistatic SAR image

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L Analysis of Image (3) Difference of Detected Targets (Roof of Houses) PALSAR monostatic SAR imagePALSAR/Pi-SAR-L bistatic SAR image

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L Analysis of Image (3) Difference of Detected Targets (Roof of Houses) PALSAR monostatic SAR imagePALSAR/Pi-SAR-L bistatic SAR image

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L Analysis of Image (3) Difference of Detected Targets (Roof of Houses) Structures is dark at the left image but is bright at the right image. (c) “Digital Japan” URL Note : the images after gamma correction PALSAR monostatic SAR imagePALSAR/Pi-SAR-L bistatic SAR image

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L Analysis of Image (3) Difference of Detected Targets (Roof of Houses) (c) Google This residential were bright. The roofs of the houses will be strongly reflected, because of the incidence angle. PALSAR/Pi-SAR-L bistatic SAR image

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L Analysis of Image (3) Difference of Detected Targets (Bridges) PALSAR monostatic SAR imagePALSAR/Pi-SAR-L bistatic SAR image

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L Analysis of Image (3) Difference of Detected Targets (Bridges) “Digital Japan”, PALSAR monostatic SAR imagePALSAR/Pi-SAR-L bistatic SAR image

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L 21 Note : the images after gamma correction 3. Analysis of Image (3) Difference of Detected Targets (Bridges) All bridges on the map appear in the bistatic SAR image. It is difficult to detect two bridges in the monostatic SAR image. Its reason will be the different incidence angle and high S/N. “Digital Japan”, PALSAR monostatic SAR imagePALSAR/Pi-SAR-L bistatic SAR image

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L Analysis of Image (3) Difference of Detected Targets (Bridges) The width of this bridge : ~ 2 m << PALSAR resolution (10m/2look) The monostatic image : not clear. The bistatic image : clear. Reason : difference of incidence angles and/or high S/N. Note : the images after gamma correction PALSAR monostatic SAR imagePALSAR/Pi-SAR-L bistatic SAR image

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L Conclusion The first PALSAR / Pi-SAR-L bistatic SAR experiment was succeeded. Bistatic SAR observation was possible without special functions. This bistatic SAR image has 3 features. 1. S/N is better, because of the short distance. 2. The azimuth resolution is lower, because of the unchanged hardware without synchronization. 3. Some different targets can be detected, because of the different incidence angles and/or high S/N. Future Work Unfortunately ALOS has been lost in this April. As future work, the next experiment is expected with ALOS-2 and Pi-SAR-L2 under development.

IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L 24 Thank you for your attention.