Query Processing Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 12, 2015.

Slides:



Advertisements
Similar presentations
Query Optimization Reserves Sailors sid=sid bid=100 rating > 5 sname (Simple Nested Loops) Imperative query execution plan: SELECT S.sname FROM Reserves.
Advertisements

Query Optimization CS634 Lecture 12, Mar 12, 2014 Slides based on “Database Management Systems” 3 rd ed, Ramakrishnan and Gehrke.
Query Execution, Concluded Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 18, 2003 Some slide content may.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Relational Query Optimization Chapters 14.
Database Management Systems, R. Ramakrishnan and Johannes Gehrke1 Evaluation of Relational Operations: Other Techniques Chapter 12, Part B.
1 Overview of Query Evaluation Chapter Objectives  Preliminaries:  Core query processing techniques  Catalog  Access paths to data  Index matching.
SPRING 2004CENG 3521 Query Evaluation Chapters 12, 14.
1 Relational Query Optimization Module 5, Lecture 2.
Relational Query Optimization 198:541. Overview of Query Optimization  Plan: Tree of R.A. ops, with choice of alg for each op. Each operator typically.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Query Evaluation Chapter 12.
Query Rewrite: Predicate Pushdown (through grouping) Select bid, Max(age) From Reserves R, Sailors S Where R.sid=S.sid GroupBy bid Having Max(age) > 40.
Relational Query Optimization (this time we really mean it)
Query Optimization Chapter 15. Query Evaluation Catalog Manager Query Optmizer Plan Generator Plan Cost Estimator Query Plan Evaluator Query Parser Query.
Indexing, Sorting, and Execution Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 18, 2004 Some slide content.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Query Evaluation Chapter 12.
Overview of Query Evaluation R&G Chapter 12 Lecture 13.
Query Optimization Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 18, 2003 Slide content courtesy Raghu Ramakrishnan.
Query Optimization II R&G, Chapters 12, 13, 14 Lecture 9.
Indexing and Sorting Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 22, 2005.
Query Optimization Overview Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems December 1, 2005 Some slide content derived.
Indexing, Sorting, and Execution Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 11, 2003 Some slide content.
1 Evaluation of Relational Operations: Other Techniques Chapter 12, Part B.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Query Optimization Chapter 15.
Query Execution and Optimization Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 23, 2004.
Query Optimization Overview Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems December 2, 2004 Some slide content derived.
Evaluation of Relational Operations. Relational Operations v We will consider how to implement: – Selection ( ) Selects a subset of rows from relation.
Sorting and Query Processing Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 29, 2005.
Query Execution Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 23, 2004.
1 Database Query Execution Zack Ives CSE Principles of DBMS Ullman Chapter 6, Query Execution Spring 1999.
Overview of Query Optimization v Plan : Tree of R.A. ops, with choice of alg for each op. –Each operator typically implemented using a `pull’ interface:
Query Optimization R&G, Chapter 15 Lecture 16. Administrivia Homework 3 available today –Written exercise; will be posted on class website –Due date:
Query Optimization, part 2 CS634 Lecture 13, Mar Slides based on “Database Management Systems” 3 rd ed, Ramakrishnan and Gehrke.
Overview of Implementing Relational Operators and Query Evaluation
Introduction to Database Systems1 Relational Query Optimization Query Processing: Topic 2.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Query Evaluation Chapter 12: Overview.
Query Optimization. overview Histograms A histogram is a data structure maintained by a DBMS to approximate a data distribution Equiwidth vs equidepth.
1 Overview of Query Evaluation Chapter Overview of Query Evaluation  Plan : Tree of R.A. ops, with choice of alg for each op.  Each operator typically.
Database systems/COMP4910/Melikyan1 Relational Query Optimization How are SQL queries are translated into relational algebra? How does the optimizer estimates.
1 Relational Query Optimization Chapter Query Blocks: Units of Optimization  An SQL query is parsed into a collection of query blocks :  An SQL.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Implementing Relational Operators and Query Evaluation Chapter 12.
Introduction to Query Optimization, R. Ramakrishnan and J. Gehrke 1 Introduction to Query Optimization Chapter 13.
Relational Query Optimization R & G Chapter 12/15.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Introduction to Query Optimization Chapter 13.
Relational Operator Evaluation. Overview Application Programmer (e.g., business analyst, Data architect) Sophisticated Application Programmer (e.g.,
1 Database Systems ( 資料庫系統 ) December 13, 2004 Chapter 15 By Hao-hua Chu ( 朱浩華 )
Database Management Systems 1 Raghu Ramakrishnan Evaluation of Relational Operations Chpt 14.
Implementation of Database Systems, Jarek Gryz1 Evaluation of Relational Operations Chapter 12, Part A.
Implementation of Database Systems, Jarek Gryz1 Relational Query Optimization Chapters 12.
Alon Levy 1 Relational Operations v We will consider how to implement: – Selection ( ) Selects a subset of rows from relation. – Projection ( ) Deletes.
Cost Estimation For each plan considered, must estimate cost: –Must estimate cost of each operation in plan tree. Depends on input cardinalities. –Must.
1 Overview of Query Evaluation Chapter Outline  Query Optimization Overview  Algorithm for Relational Operations.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Introduction To Query Optimization and Examples Chpt
Query Optimization. overview Application Programmer (e.g., business analyst, Data architect) Sophisticated Application Programmer (e.g., SAP admin) DBA,
CS222P: Principles of Data Management Lecture #15 Query Optimization (System-R) Instructor: Chen Li.
Introduction to Query Optimization
Evaluation of Relational Operations
Introduction to Database Systems
Relational Operations
Query Optimization Overview
Database Query Execution
Relational Query Optimization
Indexing and Sorting Zachary G. Ives November 21, 2007
Query Optimization Overview
Query Optimization.
Relational Query Optimization
B-Trees and Sorting Zachary G. Ives April 12, 2019
Relational Query Optimization (this time we really mean it)
CS222: Principles of Data Management Lecture #15 Query Optimization (System-R) Instructor: Chen Li.
Relational Query Optimization
Relational Query Optimization
Presentation transcript:

Query Processing Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 12, 2015

2 Making Use of the Data + Indices: Query Execution  Query plans & exec strategies  Basic principles  Standard relational operators  Querying XML

3 Making Use of the Data + Indices: Query Execution  Query plans & exec strategies  Basic principles  Standard relational operators  Querying XML

4 Query Plans  Data-flow graph of relational algebra operators  Typically: determined by optimizer Select Client = “Atkins” Join PressRel.Symbol = Clients.Symbol Scan PressRel Scan Clients Join PressRel.Symbol = EastCoast.CoSymbol Project CoSymbol Scan EastCoast SELECT * FROM PressRel p, Clients C WHERE p.Symbol = c.Symbol AND c.Client = ‘Atkins’ AND c.Symbol IN (SELECT CoSymbol FROM EastCoast)

5 Iterator-Based Query Execution  Execution begins at root  open, next, close  Propagate calls to children May call multiple child nexts  Efficient scheduling & resource usage Can you think of alternatives and their benefits? Select Client = “Atkins” Join PressRel.Symbol = Clients.Symbol Scan PressRel Scan Clients Join PressRel.Symbol = EastCoast.CoSymbol Project CoSymbol Scan EastCoast

6 Execution Strategy Issues Granularity & parallelism:  Pipelining vs. blocking  Materialization Select Client = “Atkins” Join PressRel.Symbol = Clients.Symbol Scan PressRel Scan Clients Join PressRel.Symbol = EastCoast.CoSymbol Project CoSymbol Scan EastCoast

7 Basic Principles  Many DB operations require reading tuples, tuple vs. previous tuples, or tuples vs. tuples in another table  Techniques generally used:  Iteration: for/while loop comparing with all tuples on disk  Index: if comparison of attribute that’s indexed, look up matches in index & return those  Sort/merge: iteration against presorted data (interesting orders)  Hash: build hash table of the tuple list, probe the hash table  Must be able to support larger-than-memory data

8 Basic Operators  One-pass operators:  Scan  Select  Project  Multi-pass operators:  Join  Various implementations  Handling of larger-than-memory sources  Semi-join  Aggregation, union, etc.

9 1-Pass Operators: Scanning a Table  Sequential scan: read through blocks of table  Index scan: retrieve tuples in index order  May require 1 seek per tuple! When?  Cost in page reads – b(T) blocks, r(T) tuples  b(T) pages for sequential scan  Up to r(T) for index scan if unclustered index  Requires memory for one block

10 1-Pass Operators: Select(  )  Typically done while scanning a file  If unsorted & no index, check against predicate: Read tuple While tuple doesn’t meet predicate Read tuple Return tuple  Sorted data: can stop after particular value encountered  Indexed data: apply predicate to index, if possible  If predicate is:  conjunction: may use indexes and/or scanning loop above (may need to sort/hash to compute intersection)  disjunction: may use union of index results, or scanning loop

11 1-Pass Operators: Project (  )  Simple scanning method often used if no index: Read tuple While tuple exists Output specified attributes Read tuple  Duplicate removal may be necessary  Partition output into separate files by bucket, do duplicate removal on those  If have many duplicates, sorting may be better  If attributes belong to an index, don’t need to retrieve tuples!

12 Multi-pass Operators: Join ( ⋈ ) – Nested-Loops Join  Requires two nested loops: For each tuple in outer relation For each tuple in inner, compare If match on join attribute, output  Results have order of outer relation  Can do over indices  Very simple to implement, supports any joins predicates  Supports any join predicates  Cost: # comparisons = t(R) t(S) # disk accesses = b(R) + t(R) b(S) Join outerinner

13 Block Nested-Loops Join  Join a page (block) at a time from each table: For each page in outer relation For each page in inner, join both pages If match on join attribute, output  More efficient than previous approach:  Cost: # comparisons still = t(R) t(S) # disk accesses = b(R) + b(R) * b(S)

14 Index Nested-Loops Join For each tuple in outer relation For each match in inner’s index Retrieve inner tuple + output joined tuple  Cost: b(R) + t(R) * cost of matching in S  For each R tuple, costs of probing index are about:  1.2 for hash index, 2-4 for B+-tree and:  Clustered index: 1 I/O on average  Unclustered index: Up to 1 I/O per S tuple

15 Two-Pass Algorithms Sort-based Need to do a multiway sort first (or have an index) Approximately linear in practice, 2 b(T) for table T Hash-based Store one relation in a hash table

16 (Sort-)Merge Join  Requires data sorted by join attributes Merge and join sorted files, reading sequentially a block at a time  Maintain two file pointers  While tuple at R < tuple at S, advance R (and vice versa)  While tuples match, output all possible pairings  Preserves sorted order of “outer” relation  Very efficient for presorted data  Can be “hybridized” with NL Join for range joins  May require a sort before (adds cost + delay)  Cost: b(R) + b(S) plus sort costs, if necessary In practice, approximately linear, 3 (b(R) + b(S))

17 Hash-Based Joins  Allows partial pipelining of operations with equality comparisons  Sort-based operations block, but allow range and inequality comparisons  Hash joins usually done with static number of hash buckets  Generally have fairly long chains at each bucket  What happens when memory is too small?

18 Hash Join Read entire inner relation into hash table (join attributes as key) For each tuple from outer, look up in hash table & join  Very efficient for equality

19 Running out of Memory  Resolution: When hash tables full Split hash table into files along bucket boundaries Partition remaining data in same way Recursively join partitions with diff. hash fn!  Hybrid hash join: flush “lazily” a few buckets at a time  Cost: <= 3 * (b(R) + b(S))

20 Aggregation (  )  Need to store entire table, coalesce groups with matching GROUP BY attributes  Compute aggregate function over group:  If groups are sorted or indexed, can iterate:  Read tuples while attributes match, compute aggregate  At end of each group, output result  Hash approach:  Group together in hash table (leave space for agg values!)  Compute aggregates incrementally or at end  At end, return answers  Cost: b(t) pages. How much memory?

21 Other Operators  Duplicate removal very similar to grouping  All attributes must match  No aggregate  Union, difference, intersection:  Read table R, build hash/search tree  Read table S, add/discard tuples as required  Cost: b(R) + b(S)

22 SQL Operations In a whirlwind, you’ve seen most of relational operators:  Select, Project, Join  Group/aggregate  Union, Difference, Intersection  Others are used sometimes:  Various methods of “for all,” “not exists,” etc  Recursive queries/fixpoint operator  etc.

23 What about XQuery?  Major difference: bind variables to subtrees; treat each set of bindings as a tuple  Select, project, join, etc. on tuples of bindings  Plus we need some new operators:  XML construction:  Create element (add tags around data)  Add attribute(s) to element (similar to join)  Nest element under other element (similar to join)  Path expression evaluation – create the binding tuples

Overview of Query Optimization  A query plan: algebraic tree of operators, with choice of algorithm for each op  Two main issues in optimization:  For a given query, which possible plans are considered?  Algorithm to search plan space for cheapest (estimated) plan  How is the cost of a plan estimated?  Ideally: Want to find best plan  Practically: Avoid worst plans!

Relational Algebra Equivalences  Allow us to choose different join orders and to `push’ selections and projections ahead of joins.  Selections: ( Commute )  Projections: (Cascade)  Joins: R ⋈ (S ⋈ T)  (R ⋈ S) ⋈ T (Associative) (R ⋈ S)  (S ⋈ R) (Commute) R ⋈ (S ⋈ T)  (T ⋈ R) ⋈ S  Show that:  a1 (R) ´  a1 (…(  an (R))))  c1 (  c2 (R)) ´  c2 (  c1 (R))  c1^…^cn (R) ´  c1 (…  cn (R))

More Equivalences  A projection commutes with a selection that only uses attributes retained by the projection  Selection between attributes of the two arguments of a cross-product converts cross-product to a join  A selection on ONLY attributes of R commutes with R ⋈ S:  (R ⋈ S)   (R) ⋈ S  If a projection follows a join R ⋈ S, we can “push” it by retaining only attributes of R (and S) that are needed for the join or are kept by the projection

The System-R Optimizer: Establishing the Basic Model  Most widely used model; works well for < 10 joins  Cost estimation: Approximate art at best  Statistics, maintained in system catalogs, used to estimate cost of operations and result sizes  Considers combination of CPU and I/O costs  Plan Space: Too large, must be pruned  Only the space of left-deep plans is considered  Left-deep plans allow output of each operator to be pipelined into the next operator without storing it in a temporary relation  Cartesian products avoided

Schema for Examples  Reserves:  Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.  Sailors:  Each tuple is 50 bytes long, 80 tuples per page, 500 pages. Sailors ( sid : integer, sname : string, rating : integer, age : real) Reserves ( sid : integer, bid : integer, day : dates, rname : string)

Query Blocks: Units of Optimization  An SQL query is parsed into a collection of query blocks, and these are optimized one block at a time.  Nested blocks are usually treated as calls to a subroutine, made once per outer tuple. SELECT S.sname FROM Sailors S WHERE S.age IN ( SELECT MAX (S2.age) FROM Sailors S2 GROUP BY S2.rating ) Nested blockOuter block  For each block, the plans considered are: –All available access methods, for each reln in FROM clause. –All left-deep join trees (i.e., all ways to join the relations one-at-a- time, with the inner reln in the FROM clause, considering all reln permutations and join methods.)

Enumeration of Alternative Plans  There are two main cases:  Single-relation plans  Multiple-relation plans  For queries over a single relation, queries consist of a combination of selects, projects, and aggregate ops:  Each available access path (file scan / index) is considered, and the one with the least estimated cost is chosen.  The different operations are essentially carried out together (e.g., if an index is used for a selection, projection is done for each retrieved tuple, and the resulting tuples are pipelined into the aggregate computation).

Cost Estimation  For each plan considered, must estimate cost:  Must estimate cost of each operation in plan tree.  Depends on input cardinalities.  Must also estimate size of result for each operation in tree!  Use information about the input relations.  For selections and joins, assume independence of predicates.

Cost Estimates for Single-Relation Plans  Index I on primary key matches selection:  Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index.  Clustered index I matching one or more selects:  (NPages(I)+NPages(R)) * product of RF’s of matching selects.  Non-clustered index I matching one or more selects:  (NPages(I)+NTuples(R)) * product of RF’s of matching selects.  Sequential scan of file:  NPages(R).

Example  Given an index on rating:  (1/NKeys(I)) * NTuples(R) = (1/10) * tuples retrieved  Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) = (1/10) * (50+500) pages are retrieved  Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) = (1/10) * ( ) pages are retrieved  Given an index on sid:  Would have to retrieve all tuples/pages. With a clustered index, the cost is , with unclustered index,  A simple sequential scan:  We retrieve all file pages (500) SELECT S.sid FROM Sailors S WHERE S.rating=8

Queries Over Multiple Relations  Fundamental decision in System R: only left-deep join trees are considered  As the number of joins increases, the number of alternative plans grows rapidly; we need to restrict the search space  Left-deep trees allow us to generate all fully pipelined plans.  Intermediate results not written to temporary files  Not all left-deep trees are fully pipelined (e.g., SM join) B A C D B A C D C D B A

35 Costs of Joins  Nested loops join  Disk accesses = b(R) + t(R) b(S)  Merge join  b(R) + b(S) plus sort costs, if necessary In practice, approximately linear, 3 (b(R) + b(S))  Hash join  About 3 * (b(R) + b(S)) in the larger-than-memory case