Evaluation aerosol CCI retrievals Reading 2012. the participants / the task AATSR F v142 AATSR O v202/v2q2 AATSR S v040/v031 MERIS A v21 MERIS B v11 MERIS.

Slides:



Advertisements
Similar presentations
GEMS-Aerosol WP_AER_4: Evaluation of the model and analysis Lead Partners: NUIG & CNRS-LOA Partners: DWD, RMIB, MPI-M, CEA- IPSL-LSCE,ECMWF, DLR (at no.
Advertisements

02/04/2009 University of Manchester ADIENT meeting 5 – Gareth Thomas, Maria Frontoso 1 WP 1.3: Satellite data in support of ADIENT aircraft flights Gareth.
OSE meeting GODAE, Toulouse 4-5 June 2009 Interest of assimilating future Sea Surface Salinity measurements.
Gerrit de Leeuw 1,2,3, Larisa Sogacheva1, Pekka Kolmonen 1, Anu-Maija Sundström 2, Edith Rodriguez 1 1 FMI, Climate Change Unit, Helsinki, Finland 2 Univ.
Gregory Leptoukh, David Lary, Suhung Shen, Christopher Lynnes What’s in a day?
Module 36: Correlation Pitfalls Effect Size and Correlations Larger sample sizes require a smaller correlation coefficient to reach statistical significance.
Aerosol radiative effects from satellites Gareth Thomas Nicky Chalmers, Caroline Poulsen, Ellie Highwood, Don Grainger Gareth Thomas - NCEO/CEOI-ST Joint.
European Geosciences Union General Assembly 2006 Vienna, Austria, 02 – 07 April 2006 Paper’s objectives: 1. Contribute to the validation of MODIS aerosol.
Princeton University Global Evaluation of a MODIS based Evapotranspiration Product Eric Wood Hongbo Su Matthew McCabe.
Effects of Siberian forest fires on regional air quality and meteorology in May 2003 Rokjin J. Park with Daeok Youn, Jaein Jeong, Byung-Kwon Moon Seoul.
Satellite Applications in the Monitoring and Modeling of Atmospheric Aerosols Yang Liu, Ph.D. 11/18/ nd Suomi NPP Applications Workshop Huntsville,
Climate & Radiation Laboratory, NASA Goddard Space Flight Center
Jianglong Zhang 1, Jeffrey S. Reid 2, James R. Campbell 2, Edward J. Hyer 2, Travis D. Toth, Matthew Christensen 1, and Xiaodong Zhang 3 1 University of.
GOES-R AWG Product Validation Tool Development Aerosol Optical Depth/Suspended Matter and Aerosol Particle Size Mi Zhou (IMSG) Pubu Ciren (DELL) Hongqing.
1 NOAA’s National Climatic Data Center April 2005 Climate Observation Program Blended SST Analysis Changes and Implications for the Buoy Network 1.Plans.
Evaluating Remote Sensing Data Or How to Avoid Making Great Discoveries by Misinterpreting Data Richard Kleidman ARSET-AQ Applied Remote Sensing Education.
Dr. Natalia Chubarova Faculty of Geography, Moscow State University, , Moscow, Russia, 2012 Gregory G. Leptoukh Online Giovanni.
PACE AEROSOL CAL/VAL Cameron McNaughton Golder Associates Ltd.
Measurement of the Aerosol Optical Depth in Moscow city, Russia during the wildfire in summer 2010 DAMBAR AIR.
Aerosol-cci: WP2220: Cloud mask comparison Gerrit de Leeuw.
Aircraft spiral on July 20, 2011 at 14 UTC Validation of GOES-R ABI Surface PM2.5 Concentrations using AIRNOW and Aircraft Data Shobha Kondragunta (NOAA),
Imperial College - 19 Feb DESERT DUST SATELLITE RETRIEVAL INTERCOMPARISON Elisa Carboni 1, G.Thomas 1, A.Sayer 1, C.Poulsen 2, D.Grainger 1, R.Siddans.
AERONET in the context of aerosol remote sensing from space and aerosol global modeling Stefan Kinne MPI-Meteorology, Hamburg Germany.
Evaluation aerosol CCI satellite retrievals MACC assimilations Reading 2012.
VALIDATION OF SUOMI NPP/VIIRS OPERATIONAL AEROSOL PRODUCTS THROUGH MULTI-SENSOR INTERCOMPARISONS Huang, J. I. Laszlo, S. Kondragunta,
MPI-Meteorology Hamburg, Germany Evaluation of year 2004 monthly GlobAER aerosol products Stefan Kinne.
EGU Vienna, Matthias Jerg on behalf of Cloud CCI Deutscher Wetterdienst The ESA Cloud CCI project.
Earth Observation Science Recent and potential scientific achievements of the (A)ATSR Series - and some possibilities for synergy with MERIS David Llewellyn-Jones.
AMFIC: Aerosol retrieval Gerrit de Leeuw, FMI/UHEL/TNO Pekka Kolmonen, FMI Anu-Maija Sundström, UHEL Larisa Sogacheva, UHEL Juha-Pekka Luntama, FMI Sini.
IAAR Seminar 21 May 2013 AOD trends over megacities based on space monitoring using MODIS and MISR Pinhas Alpert 1,2, Olga Shvainshtein 1 and Pavel Kishcha.
Maria Val Martin and J. Logan (Harvard Univ., USA) D. Nelson, C. Ichoku, R. Kahn and D. Diner (NASA, USA) S. Freitas (INPE, Brazil) F.-Y. Leung (Washington.
Collection 6 update: MODIS ‘Deep Blue’ aerosol Andrew M. Sayer, N. Christina Hsu, Corey Bettenhausen, Myeong-Jae Jeong, Jaehwa Lee.
Advances in Applying Satellite Remote Sensing to the AQHI Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Akhila Padmanabhan, Dalhousie.
Applications of Satellite Remote Sensing to Estimate Global Ambient Fine Particulate Matter Concentrations Randall Martin, Dalhousie and Harvard-Smithsonian.
Aerosol Optical Depth during the Northern CA Fires of 2008 In situ aerosol light scattering and absorption measurements in Reno Nevada, 2008, indicated.
Rossana Dragani ECMWF Comparison of L3 CCI Ozone, Aerosols, and GHG data with models outputs using the CMF.
DEVELOPING HIGH RESOLUTION AOD IMAGING COMPATIBLE WITH WEATHER FORECAST MODEL OUTPUTS FOR PM2.5 ESTIMATION Daniel Vidal, Lina Cordero, Dr. Barry Gross.
Monitoring aerosols in China with AATSR Anu-Maija Sundström 2 Gerrit de Leeuw 1 Pekka Kolmonen 1, and Larisa Sogacheva 1 AMFIC , Barcelona 1:
NASA and Earth Science Applied Sciences Program
NASA Ocean Color Research Team Meeting, Silver Spring, Maryland 5-7 May 2014 II. Objectives Establish a high-quality long-term observational time series.
QA filtering of individual pixels to enable a more accurate validation of aerosol products Maksym Petrenko Presented at MODIS Collection 7 and beyond Retreat.
Provenance in Earth Science Gregory Leptoukh NASA GSFC.
Aerosol_cci ECV. Aerosol_cci > Thomas Holzer-Popp > ESA Living Planet Symposium, Bergen, 1 July 2010 slide 2 Major improvements over precursor AOD datasets.
As components of the GOES-R ABI Air Quality products, a multi-channel algorithm similar to MODIS/VIIRS for NOAA’s next generation geostationary satellite.
Characterization of Aerosol Data Quality from MODIS for Coastal Regions Jacob Anderson Mentor: Gregory Leptoukh.
Estimating PM 2.5 from MODIS and MISR AOD Aaron van Donkelaar and Randall Martin March 2009.
High Resolution MODIS Aerosols Observations over Cities: Long Term Trends and Air Quality.
NGAC verification NGAC verification is comparing NGAC forecast (current AOT only) with observations from ground-based and satellite measurements and with.
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
An Observationally-Constrained Global Dust Aerosol Optical Depth (AOD) DAVID A. RIDLEY 1, COLETTE L. HEALD 1, JASPER F. KOK 2, CHUN ZHAO 3 1. CIVIL AND.
GEWEX Aerosol Assessment Panel members Sundar Christopher, Rich Ferrare, Paul Ginoux, Stefan Kinne, Jeff Reid, Paul Stackhouse Program Lead : Hal Maring,
Direct aerosol radiative effects based on combined A-Train observations Jens Redemann, Y. Shinozuka, J. Livingston, M. Vaughan, P. Russell, M.Kacenelenbogen,
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
Intercomparison of satellite retrieved aerosol optical depth over ocean G. Myhre, F. Stordal, M. Johnsrud, A. Ignatov, M.I. Mishchenko, I.V. Geogdzhayev,
Analysis of satellite imagery to map burned areas in Sub-Saharan Africa CARBOAFRICA conference “Africa and Carbon Cycle: the CarboAfrica project” Accra.
Interannual Variability and Decadal Change of Solar Reflectance Spectra Zhonghai Jin Costy Loukachine Bruce Wielicki (NASA Langley research Center / SSAI,
MODIS Atmosphere Products: The Importance of Record Quality and Length in Quantifying Trends and Correlations S. Platnick 1, N. Amarasinghe 1,2, P. Hubanks.
Global Air Pollution Inferred from Satellite Remote Sensing Randall Martin, Dalhousie and Harvard-Smithsonian with contributions from Aaron van Donkelaar,
A comparison of AMSR-E and AATSR SST time-series A preliminary investigation into the effects of using cloud-cleared SST data as opposed to all-sky SST.
MPI-Meteorology Hamburg, Germany Evaluation of year 2004 monthly GlobAER aerosol products Stefan Kinne.
Aerosol Climate Time Series Evaluation in ESA Aerosol_cci Thomas Popp, Gerrit de Leeuw, Simon Pinnock, Miriam Kosmale, Larisa Sogachewa, Pekka Kolmonen,
Algorithm Theoretical Basis Document GlobAlbedo Aerosol Retrieval
SEVIRI Solar Channel Calibration system
sun- (/sky-) photometer ground-networks
Evaluating Remote Sensing Data
Comparison of AATSR SST with other sensors
Estimating PM2.5 using MODIS and GOES aerosol optical depth retrievals in IDEA Hai Zhang , Raymond M. Hoff1 , Shobha Kondragunta2.
G. Myhre, F. Stordal, M. Johnsrud, A. Ignatov, M. I. Mishchenko, I. V
NOAA Objective Sea Surface Salinity Analysis P. Xie, Y. Xue, and A
Global Climatology of Aerosol Optical Depth
Presentation transcript:

evaluation aerosol CCI retrievals Reading 2012

the participants / the task AATSR F v142 AATSR O v202/v2q2 AATSR S v040/v031 MERIS A v21 MERIS B v11 MERIS E 802 PARASOL v30 MODIS_aqua c5.1 MODIS_terra c5.1 SEAWIFS MISR v31 evaluate daily global ‘CCI-aerosol’ retrievals –for the entire year 2008 AOD 550nm Angstrom (if offered) versus AERONET / MAN performance in context of established retrievals

ECMWF AOD FBOV (single assim.)FMNG (dual assim.) less aerosol

ECMWF Angstrom FBOV (single assim.)FMNG (dual assim.) larger sizes

data content AOD year 2008 MISR MODIS TERRA PARASOL MERIS-ESA MERIS-BAER MERIS-ALAMO ATSR-SU ATSR ORAC ATSR ADV

data volume AOD 1/1/2008 MODIS AQUA MISR PARASOL MERIS-ESA MERIS-BAER MERIS-ALAMO ATSR-SU ATSR ORAC ATSR ADV MODIS TERRA

the scoring concept establish 1x1 gridded AERONET daily data –default: use +/- 30min of overpass of satellite –option: use daily averages identify local data pairs to level 3 daily 1x1 satellite retrievals (test data & reference data) require at least 10 events to perform a statistical analysis (e.g. correlation, bias)

the scoring concept establish 1x1 gridded AERONET daily data –default: use +/- 30min of overpass of satellite –option: use daily averages identify local data pairs to level 3 daily 1x1 satellite retrievals (test data & reference data) require at least 10 events to perform a statistical analysis (e.g. correlation, bias)

scoring steps establish regional scores (1: best, 0: poor) –Step1regional spatial score for each day (rank) correlation and (rank) bias –Step2regional temporal score for each 1x1 (rank) correlation and (rank) biast –Step3combined regional score total score = bias * spat.corr * temp.corr –Step4combine regional to one global score ‘single score’ from regional total scores investigated property: AOD550

MODIS TERRA AOD performance total error –bias –spatial –temporal bias –tendency –albsolute

AOD bias versus AERONET smaller   larger MODIS TERRA MISR PARASOL MERIS-ESA MERIS-BAER MERIS-ALAMO ATSR-SU ATSR-ADV ATSR-ORAC

AOD difference to MODIS smaller than MODIS larger than MODIS PARASOL ATSR-SU ATSR-ORAC ATSR-ADV

AOD total error comparison  Increasingly larger ERROR MODIS TERRA MISR PARASOL MERIS-ESA MERIS-BAER MERIS-ALAMO ATSR-SU ATSR-ORAC ATSR-ADV

overall AOD scores global land ocean MODIS A/T AATSR S v AATSR O v MISR AATSR F v AATSR S v MERIS B v SEAWIFS PARASOL MERIS ESA MERIS A based on a 10+ sample statistics absolute larger score is better +/- sign for overall bias

let us go regional (1) boreal – MODIS (.47), MERIS-BAER(.22) N.America temp –ATSR-S40 (-.62), ATSR-O202 (.58), ATSR-F142 (-.57), MISR (.56), MODIS (.44) S.America trop –Modis (-.67) S.America temp –MODIS (.44), Seawifs (.34), MERIS-BEAR (.31) N.Africa –ARSR-S31 (-.72), ATSR-S40(.70), MOD (.67), BEAR (.37) S.Africa –MODIS (.63) 10 + events

let us go regional (2) EU-Asia boreal – MODIS (-.58) EU-Asia temp –MODIS (.63), MISR (-.62), ATSR-S40 (-.58), ATSR-F142 (-.54), ATSR-O202 (-.53), ATSR-S31 (-.52), BAER (-.41) Asia trop –Modis (-.62), MERIS-BEAR (.47) Europe –MISR (-.63), ATSR-S40 (-.61), ATSR-F142 (-.59), ATSR- O202 (.59), MODIS (.58), ATSR-S31 (-.53), BEAR (.31) N.Pacific temp –MODIS (.61), ARSR-F142 (-.54), MISR (.53), BEAR (.47) N.Atlantic temperate –MODIS (.61), SEAWIFS (.47), BEAR (.45) 10 + events

what regional scores tell us ATSR data coverage is poor compared to MODIS comparisons in regions with sufficient data statistics indicated that all three ATSR AOD data-sets in quality are at/near the level of MODIS/MISR current overall ATSR AOD ranking: –1. SU4.0 –2. O202 –3. F142 MERIS potentially offers data similar to MODIS MERIS BEAR 1.1 demonstrates data-volume processing … but data-quality is relatively poor

overall Angstrom scores global land ocean AATSR S v AATSR S v AATSR F v AATSR O v MISR MERIS ESA PARASOL MERIS A all Angstrom data are biased HIGH! land scores are poorer than ocean scores based on a 10+ sample statistics absolute larger score is better +/- sign for overall bias

final thoughts some of the current CCI retrievals for AOD have reached the maturity of US products while ATSR has become competitive, MERIS products lag behind ocean reference data are needed (MAN data are too sparse) to statistically evaluate retrieval quality over oceans, also in order to get reliable scores for PARASOL and MERIS data

extra slides

further thoughts the combination of ‘sufficient’ coverage and of ‘sufficient’ accuracy matters temporal correlation (seasonality) is generally poorer than spatial correlation (patterns)

issues more solid (statistical) evaluations require … better spatial coverage –how to get references for non AERONET loc ? better temporal coverage –4 months are not enough for limited swath better accuracy –more confidence in AERONET reference –fewer sites, less variability, several per hour

2ass … minus … 1 ass  improvement deteriation 

2 ass … minus … 1 ass  improvement deteriation 

O202 … minus … SU40  improvement deteriation 

O202 … minus … SU40  improvement deteriation 

O202 … minus … SU40  improvement deteriation 

SU40 … minus … SU31  improvement deteriation 

F142 … minus … SU40  improvement deteriation 

extras this Thn is this Thn is Thn is Thn is

MODIS AQUA AOD performance total error –bias –spatial –temporal bias –tendency –absolute

MISR AOD performance total error –bias –spatial –temporal bias –tendency –absolute

POLDER AOD performance total error –bias –spatial –temporal bias –tendency –absolute

MERIS ESA AOD performance total error –bias –spatial –temporal bias –tendency –absolute

MERIS BEAR AOD performance total error –bias –spatial –temporal bias –tendency –absolute

MERIS ALAMO AOD performance total error –bias –spatial –temporal bias –tendency –absolute

AATSR SU40 AOD performance total error –bias –spatial –temporal bias –tendency –absolute

AATSR SU31 AOD performance total error –bias –spatial –temporal bias –tendency –absolute

AATSR O202 AOD performance total error –bias –spatial –temporal bias –tendency –absolute

AATSR O202iq AOD performance total error –bias –spatial –temporal bias –tendency –absolute effectively ‘identical to O202

AATSR ADV142 AOD performance total error –bias –spatial –temporal bias –tendency –absolute

AATSR SU40 AOD performance total error –bias –spatial –temporal bias –tendency –absolute MODIS terra

AATSR O202 AOD performance total error –bias –spatial –temporal bias –tendency –absolute MODIS terra

AATSR ADV142 AOD performance total error –bias –spatial –temporal bias –tendency –absolute MODIS terra

POLDER AOD performance total error –bias –spatial –temporal bias –tendency –absolute MODIS terra