- 1 - 有機導電体における分子自由度 ・分子性導体の歴史 ・ (EDO-TTF) 2 PF 6 の多重不安定性 超高速・高効率光誘起相転移・分子の化学修飾と錯体の物性変化 低温物質科学研究センター 矢持 秀起.

Slides:



Advertisements
Similar presentations
Understanding Complex Spectral Signatures of Embedded Excess Protons in Molecular Scaffolds Andrew F. DeBlase Advisor: Mark A. Johnson 68 th Internatinal.
Advertisements

On the Differences between SERS and Infrared Reflection Absorption Spectra of CO 2 on Cold-deposited Copper M.Lust, A.Pucci,Universität Heidelberg A.Otto,
Anandh Subramaniam & Kantesh Balani
Influence of Charge and Network Inhomogeneities on the Swollen-Collapsed Transition in Polyelectrolyte Nanogels Prateek Jha (Northwestern University) Jos.
Happyphysics.com Physics Lecture Resources Prof. Mineesh Gulati Head-Physics Wing Happy Model Hr. Sec. School, Udhampur, J&K Website: happyphysics.com.
Are there gels in quantum systems? Jörg Schmalian, Iowa State University and DOE Ames Laboratory Peter G. Wolynes University of California at San Diego.
SDW Induced Charge Stripe Structure in FeTe
1 1.Introduction 2.Electronic properties of few-layer graphites with AB stacking 3.Electronic properties of few-layer graphites with AA and ABC stackings.
Interacting charge and spin chains in high magnetic fields James S. Brooks, Florida State University, DMR [1] D. Graf et al., High Magnetic Field.
Ab initio Calculations of Interfacial Structure and Dynamics in Fuel Cell Membranes Ata Roudgar, Sudha P. Narasimachary and Michael Eikerling Department.
The total energy as a function of collective coordinates, ,  for upright and tilted structures are plotted. Two types of frequency spectrum are calculated:
The electronic structures of 2D atomically uniform thin film S.- J. Tang, T. Miller, and T.-C. Chiang Department of Physics, University of Illinois at.
Solid State Structure Edward A. Mottel Department of Chemistry Rose-Hulman Institute of Technology.
Domain walls at the SDW endpoint of (TMTSF) 2 PF 6 under pressure C.Pasquier, Laboratoire de Physique des Solides, Orsay S. Brazovskii LPTMS, Orsay Acknowledgments:
Statistical Mechanics
Raman Spectroscopy Spectrum is defined by: 1.position of the peaks 2.Intensity of the peaks Peak positions are a function of the force constants, and are.
Semiconductors n D*n If T>0
Materials 286K Class 02. The Peierls distortion seen in 1D chains: The simplest model for a gap. Note that we go from being valence-imprecise.
Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universit ä t Stuttgart Outline.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
Laser Physics I Dr. Salah Hassab Elnaby Lecture(2)
IV. Electronic Structure and Chemical Bonding J.K. Burdett, Chemical Bonding in Solids Experimental Aspects (a) Electrical Conductivity – (thermal or optical)
Chapter 10 Liquids & Solids
Nonisovalent La substitution in LaySr14-y-xCaxCu24O41: switching the transport from ladders.
IV. Electronic Structure and Chemical Bonding
Electronic instabilities Electron phonon BCS superconductor Localization in 1D - CDW Electron-electron (  ve exchange)d-wave superconductor Localization.
Chapter 10 Liquids and Solids Intermolecular Forces Forces between (rather than within) molecules.  dipole-dipole attraction: molecules with dipoles orient.
The authors gratefully acknowledge the financial support of the EPSRC High slope efficiency liquid crystal lasers designed through material parameter optimisation.
Dynamics Neutron Scattering and Dan Neumann
Crystal structure, T-P phase diagram and magnetotransport properties of new organic metal Crystal structure, T-P phase diagram and magnetotransport properties.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Ultrafast Carrier Dynamics in Graphene M. Breusing, N. Severin, S. Eilers, J. Rabe and T. Elsässer Conclusion information about carrier distribution with10fs.
29-1Bonding in Molecules *When atoms cling together as a single unit to achieve lower energy levels, this is a chemical bond. *Bonds occur as ionic an.
Solid State Physics Yuanxu Wang School of Physics and Electronics Henan University 双语教学示范课程.
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
Molecular bonding. Molecular Bonding and Spectra The Coulomb force is the only one to bind atoms. The combination of attractive and repulsive forces creates.
Behavior of Waves In-phase rays reinforce Out-of phase rays annihilate each other Rays out of phase by an exact number of wavelengths reinforce each other.
Suppression of charge ordering across the spin- Peierls transition in TMTTF based Q1D material Shigeki Fujiyama Inst. for Molecular Science (Dept. of Applied.
Meta-stable Sites in Amorphous Carbon Generated by Rapid Quenching of Liquid Diamond Seung-Hyeob Lee, Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu-Hwan Lee, and.
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
Charge frustration and novel electron-lattice coupled phase transition in molecular conductor DI-DCNQI 2 Ag Charge frustration and novel electron-lattice.
Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.
Structural Determination of Solid SiH 4 at High Pressure Russell J. Hemley (Carnegie Institution of Washington) DMR The hydrogen-rich solids are.
Solids and Modern Materials Chapter 12
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Which of the following refer to the basic categories associated with the energy of a single molecule in a gaseous phase?
2008 International Symposium on Molecular Spectroscopy Anion Photoelectron Spectra of CHX 2 - and CX 2 - Properties of the Corresponding Neutrals Scott.
TEMPERATURE-INDUCED VALENCE AND STRUCTURAL INSTABILITY OF DMTTF-CA Paolo Ranzieri, Alberto Girlando Matteo Masino Università degli studi di Parma INSTM.
Low-temperature properties of the t 2g 1 Mott insulators of the t 2g 1 Mott insulators Interatomic exchange-coupling constants by 2nd-order perturbation.
6/7/2016 Iron Superconductivity !! o Superconducting Gap in FeAs from PCAR o “Minimal” Model of FeAs planes – Different from CuO 2 !! o Multiband Magnetism.
Photoinduced nano and micron structures K. Nasu Solid state theory division, Institute of materials structure science, High energy accelerator research.
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Materials Research Centre Indian Institute of Science, Bangalore Abhishek K. Singh Indian Institute of Science, Bangalore High throughput computational.
MIT Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1.
Kintetic Molecular Theory
Question on Van der Waals Interactions
CH. 12 SOLIDS & MODERN MATERIALS
Kintetic Molecular Theory
ECEE 302: Electronic Devices
Read: Chapter 2 (Section 2.3)
Chapter 12 Solids and Modern Materials
Chapter 12 – Solids and Modern Materials
Literature seminar Yuna Kim
Two types of solids crystalline: highly ordered, regular arrangement (lattice/unit cell) amorphous: disordered system.
Going through a phase: ICs of azobenzene derivatives show a photoinduced IC–IL phase transition (photoliquefaction) upon UV irradiation, and the resulting.
MIT Amorphous Materials 10: Electrical and Transport Properties
How To Design a Molecular Conductor:
Parameter Space for Amorphous Oxide Semiconductors (AOSs)
Presentation transcript:

- 1 - 有機導電体における分子自由度 ・分子性導体の歴史 ・ (EDO-TTF) 2 PF 6 の多重不安定性 超高速・高効率光誘起相転移・分子の化学修飾と錯体の物性変化 低温物質科学研究センター 矢持 秀起

- 2 - Molecular Conductor ― Summarized History 1954 Organic Semiconductor1960s 1D Organic Metals1980s: Organic Superconductors Q1D Superconductors max. T c = 1.4 K (AP) 2D Superconductors max. T c = 12.3 K (AP) Increment of Dimensionality 1990s: 3D Molecular Superconductors max. T c = 33 K (AP)

- 3 - TTFTCNQ - The First Organic Metal 38 K 54 K Peierls gap TTFTCNQ In TTF chain in TCNQ chain Semiconductor Metal

- 4 - Increasing the Dimensionality Increment of side-by-side intermolecular interaction TTF BEDT-TTF (ET) Number of Atoms TMTSF Atom Size

- 5 - TMTSF Superconductors

- 6 - & much more at present BEDT-TTF Superconductors

dimensional Superconductors Max T c = 33 K (RbCs 2 C 60 ) Alkali metals are in the interstitial sites among C 60 's.

s: Organic Superconductors Q1D Superconductors max. T c = 1.4 K (AP) 2D Superconductors max. T c = 12.3 K (AP) Summarized History 1954 Organic Semiconductor1960s 1D Organic Metals Increment of Dimensionality 1990s: 3D Molecular Superconductors max. T c = 33 K (AP) Molecular Degree of Freedom Lattice point  Simply a point  Size  Shape  Functionality

- 9 - BEDO-TTF(BO) Salt Self-assembling Packing Pattern 2D Layered Structure 3a+c vdW SS = 3.60 Å SO = 3.32 Å Side-by-side Heteroatomic Contacts a+2c vdW HO = 2.72 Å Weak Hydrogen Bond Network  2D Electronic Structure Calculated Fermi Surface

Partial Suppression of Self-assembling Nature of BO Introduction of Bulky Substituent Removal of an EDO Group Flat Side Surface -OCH 2 CH 2 O-  Stable Metal NO PHASE TRANSITION obstruction

EDO-TTF Complexes No Metal No Self-assembling A. Ota, et al., Mol. Cryst. Liq. Cryst., 376, (2002) + TCNQ deriv.  + Inorg. Anions  Variety of Structure & Properties 2:1 ReO 4, GaCl 4  RT = 130, 54 Scm -1 Activated behaviors  250 K Different typed columns 5:3 BF 4  RT = 1 Scm -1 (Ea = 62 meV) 4:0.85:4(H 2 O) Sb 2 F 11  RT = 2 Scm -1 (Ea = 55 meV) Multimer & monomer A. Ota et al., J. Low Temp. Phys., 142 (3/4), 425 (2006) A. Ota et al., in “Multifunctional Conducting Molecular Materials”, eds. G. Saito et al., RSC Publishing, Cambridge, UK. (2007), pp At 2001 (w hen we started ), Synthesis of donor A few kinds of complexes No description of composition Conductivity: No description or  2  Scm  1

EDO-TTF — Preparation of PF 6 Complex A. Ota et al., J. Mater. Chem., 12, 2600 (2002)

Thermally Induced MI Transition of (EDO-TTF) 2 PF 6 T MI  280 K  jump: ca. 5 order Paramag.  Non-mag. First-order Transition

How Metal-Insulator Transitions Occur itinerant electrons Spin Density Counter Component On-site Coulomb (U) Neighbor-site Coulomb (V) CDW Anion Ordering (order- disorder) SDW Mott Charge Ordering Peierls New periodicity by Charge & Lattice Charge density Localization by Coulomb repulsion NO One Mechanism for One Transition

planar: 0.8º, 2.1º bent: 11.1º, 7.9º  1,  2 : 6.0º, 0.3º Distinct Molecular Deformation PF 6 Rotation Isotropic (EDO-TTF) 2 PF 6 — Above and Below T MI (280 K) Overlap Integral Uniform from Bond Length 0.5+ Molecular Deformation is regarded as the Origin to Mix Metal-Insulator Transition Mechanisms (Multi-instability). Alternate Peierls (Overlap Integral  10 3 ) 1+/0 Charge Ordering Uniaxial Order- Disorder

(EDO-TTF) 2 PF 6  Other Properties  Raman Spectra: 4.2 K  Coexistence of 0.9+, 0.1+ Donors O. Drozdova et al., Synthetic Metals, , (2003). Accurate Structure Analysis with MEM method: 285 K  +0.6(1) 260 K  F: +0.8(1), B: +0.2(1) S. Aoyagi et al., Angew. Chem. Int. Ed., 43 (28), (2004). Calorimetry: Transition Entropy  Unharmonicity of PF 6 Rotation in RT Phase K. Saito et al., Chem. Phys. Lett., 401 (1-3), (2005). Reflection Spectra: Significant Temperature Dependence O. Drozdova et al., Phys. Rev., B70 (7), (2004). Photo-induced Phase Transition: Ultra-fast Highly Efficient, ~ 0.1 ps, donors/photon M. Chollet et al., Science, 307, (2005). Uni-axial Strain: along c*  T MI  (> 60 K/4 kbar) M. Sakata et al., Synthetic Metals, 153 (1-3), (2005).

Photo-induced Phase Transition (PIPT) Completes in ca. 1.5 ps Probe PIPT to Highly Conducting Metastable State 1 photon / molecules M. Chollet et al., Science, 307, (2005) vibration: ca. 0.5 ps/cycle at 180 K Strong Electron-Lattice Interaction Pump 1.55 eV Time Delay

Our system 50 – 500 molecules 50 – 500 molecules within ca. 0.1 ps within ca. 0.1 ps one photon RbTCNQ (Ins. - Metal) < 10 molecules, ca. 0.1 ps TTF-Chloranil (Neutral - Ionic) 280-2,800 molecules,  1 ns PIPT — Comparison with other systems Ultra-fast & Highly Efficient PIPT Controllable Initialization Development of Phase Transition  Dynamics of Non-equilibrium State  Dynamics of Non-equilibrium State

Optical Conductivity (10 3  -1 cm)  R/R LT phase (180 K) HT phase (290 K) Wide Range Optical Conductivity Spectra Simulated (simple multilayer model) K. Onda, S. Ogihara, K. Yonemitsu, N. Maeshima, T. Ishikawa, Y. Okimoto, X.F. Shao, Y. Nakano, H. Yamochi, G. Saito, S. Koshihara, Phys. Rev. Lett., 101(6), (2008) 0.1 ps after pump one peak at low energy Theoretical Calculation H : t, U, V,  (e-ph coupling  anion potential modulation) time dependent model PIPT state: (1010) Charge Disp.  RT Metallic (½ ½ ½ ½) Phase Lattice potential: fluctuated in this time scale PI Metastable State  RT Metallic Phase =?=? : (0110)

After (EDO-TTF) 2 PF 6  Isotope Effect Isotope substitution  Lattice (Molecular) Vibrations Electron-Phonon (Electron- Molecular Vibration) Coupling (EDO-TTF- d x ) 2 AsF 6  Modulation of  -system (conduction path) vibrations  For PF 6 & AsF 6 complexes d 0  d 2  T MI  3 K

T MI by Magnetic Susceptibility Size T MI (K)Δ T MI (K) PF AsF SbF T MI ↓ T MI ↑ Isostructural (EDO-TTF) 2 XF 6 (X = P, As Sb) After (EDO-TTF) 2 PF 6  Anion Size Effect スライド内容 一部削除 ここで観測された、転移温度とヒステリシ ス幅の陰イオン依存性については、現在、 その詳細を解析中です。

Molecular Design Based on EDO-TTF Distinct Molecular Deformation Multi-instability of Itinerant Electrons EDO-TTF having Small Sized Substituent To Find Further Peculiar Systems Similar  -electron system Similar Molecular Size Lower Symmetry cf. 17 % yield: A. Miyazaki et al., (2001)

Complexes AnionD : A  rt (S cm -1 ) Compressed Pellets BF 4 2 : 126 (Metal) ClO 4 2 : 124 (Metal) PF 6 2 : 1 3 (Semi.) AsF 6 2 : 115 (MI at 240 K) SbF 6 2 : 1 6 (MI at 250 K) HCTMM4 : 1 6 (Semi.) X.F. Shao et al., J. Mater. Chem., 18, (2008) 2:1 PF 6  rt (S cm -1 ) Black powder 3 (Semi.) Dark green plates29 (MI at 200 K) Black plates 0.07  4 (Semi.-Semi. at 303 K)

c-axis projection Crystal Structure of (MeEDO-TTF) 2 X (X = BF 4, ClO 4 ) Orthorhombic Cmcm a = (2) Å b = (1) c = 6.969(1) V = (4) Å 3 Z = 4 R = 5.7 % (I o > 2  (I o )) GooF = Metal down to 10 K Donor: Head-to-Head (parallel) Anion: Disordered a-axis projection t = 11.7, p = 8.4, s = -5.1  D Fermi Surface with weak intermol. interactions For X = BF 4

(MeEDO-TTF) 2 PF 6 : Semiconductor-Semiconductor Black Plate H-phase isostructural with metallic BF 4 & ClO 4  = 0º   4º H-phase L-phase Nearly Localized Charge-order Definitive Charge-order Area of Conducting Layer (Å 2 ) StableBF 4 ClO 4 PF 6 Semi- metal conductor V/t

有機導電体における分子自由度 ・格子点 ・格子点  点 形状・大きさ・機能性形状変化が可能・新たな機能性物質多重不安定性外場敏感相転移物質光誘起相転移物質 → 開始時刻の制御 → 開始時刻の制御 → 非平衡状態の研究 → 非平衡状態の研究

低温物質科学研究センター Research Center for Low Temperature and Materials Sciences 分子性材料開拓・解析研究分野 Division of Molecular Materials Science