Objective: The student will be able to: multiply two polynomials using the FOIL method, Box method, and the distributive property.

Slides:



Advertisements
Similar presentations
Objective The student will be able to: multiply two polynomials using the FOIL method, Box method and the distributive property. Designed by Skip Tyler,
Advertisements

Objective The student will be able to:
Multiplying Polynomials Be able to use different methods to multiply two polynomials.
Simplify the expression. 1.(–3x 3 )(5x) ANSWER –15x 4 ANSWER –9x–9x 2. 9x – 18x 3. 10y 2 + 7y – 8y 2 – 1 ANSWER 2y 2 + 7y – 1.
Objective: To be able to find the product of two binomials. Objective: To be able to find the product of two binomials. 8.7 Multiplying Polynomials Part.
Multiplication of Polynomials.  Use the Distributive Property when indicated.  Remember: when multiplying 2 powers that have like bases, we ADD their.
I can show multiplying polynomials with the FOIL. OBJECTIVE.
Warm Up Simplify each expression: 1.(-4) (5x) 2 5x 1 4.-(-4.9) 0 5.[(3x 4 y 7 z 12 ) 5 (–5x 9 y 3 z 4 ) 2 ] 0.
Review Polynomials. Monomials - a number, a variable, or a product of a number and one or more variables. 4x, 20x 2 yw 3, -3, a 2 b 3, and.
Polynomials. Monomials - a number, a variable, or a product of a number and one or more variables. 4x, 20x 2 yw 3, -3, a 2 b 3, and 3yz are all monomials.
Bell Work 11/22. Homework Due 11/25 Exponents & Exponential Functions Page 82 #1-28 all.
There are three techniques you can use for multiplying polynomials. The best part about it is that they are all the same! Huh? Whaddaya mean? It’s all.
POLYNOMIALS INTRODUCTION. What does each prefix mean? mono one bi two tri three.
MATH JOURNAL ENTRY SOLVE THIS PROBLEM (6x 2 + 4x - 9) + ( 12x 2 + 9x - 13) TELL WHETHER YOU PERFER TO GROUP TERMS OR USE THE COLUMN METHOD TO ADD OR SUBTRACT.
8.7 Multiplying Polynomials p.. The FOIL method is ONLY used when you multiply 2 binomials. F irst terms O utside terms I nside terms L ast terms.
Multiplying Polynomials
Do Now: 1. 2x 3  x 3 = ________ 2. 2x 3  3x 2 = ________ 3. 2x 3  (-2x) = ________ 4. 2x 3  5 = ________.
Objective The student will be able to: multiply two polynomials using the FOIL method, Box method and the distributive property.
Review Operations with Polynomials December 9, 2010.
Warm up. FOIL Definition: Polynomial Special Names.
Day Problems Simplify each product. 1. 8m(m + 6) 2. -2x(6x3 – x2 + 5x)
Essential Question. Daily Standard & Essential Question MM1A2c:Add, subtract, multiply, and divide polynomials MM1A2g: use area and volume models for.
Multiplying Polynomials -Distributive property -FOIL -Box Method.
Copyright © 2010 Pearson Education, Inc. All rights reserved. 5.3 – Slide 1.
Copyright © 2014, 2010, 2006 Pearson Education, Inc. Section 5.3 Slide 1 Exponents and Polynomials 5.
Multiply two binomials using FOIL method
The third method is the Box Method. This method works for every problem! Here’s how you do it. Multiply (3x – 5)(5x + 2) Draw a box. Write a polynomial.
What is the area of the shaded region?
EXAMPLE 3 Multiply polynomials vertically
Multiplying Polynomials with FOIL Objective: Students will multiply two binomials using the FOIL method. S. Calahan March 2008.
Binomial X Binomial The problems will look like this: (x – 4)(x + 9)
8.7 Multiplying Polynomials What you’ll learn: 1.To multiply two binomials 2.To multiply two polynomials.
EXAMPLE 3 Multiply polynomials vertically Find the product (b 2 + 6b – 7)(3b – 4). SOLUTION STEP 1 Multiply by – 4. b 2 + 6b – 7 – 4b 2 – 24b b –
Mrs. Reynolds 2/19/14. When multiplying two binomials, you can use the FOIL Method. FOIL is a series of four steps using the Distributive Property.
ADD & SUBTRACT POLYNOMIALS. 1. Add the following polynomials: (9y - 7x + 15a) + (-3y + 8x - 8a) Group your like terms. 9y - 3y - 7x + 8x + 15a - 8a 6y.
Objective The student will be able to: multiply two polynomials using the Box method and the distributive property. SOL: A.2b Designed by Skip Tyler, Varina.
Lesson 10.2 Multiplying Polynomials Objective: To multiply polynomials Multiply monomials by other polynomials by using distributive property Examples.
Objective The student will be able to: multiply two polynomials using the distributive property.
DO NOW Multiply the following monomials:
Multiply two binomials using FOIL method
AIM: How do we multiply and divide polynomials?
Multiply Binomials SWBAT multiply binomials using the distributive property; multiply binomials using the FOIL method.
I can show multiplying polynomials with the FOIL.
Objective - To multiply polynomials.
Warm-Up.
Objectives The student will be able to:
Ch 7-7 Multiply Polynomials Objective The student will be able to:
13 Exponents and Polynomials.
Objective The student will be able to:
Multiply polynomials When multiplying powers with the same base, keep the base and add the exponents. x2  x3 = x2+3 = x5 Example 1: Multiplying Monomials.
Multiplying Polynomials
Multiplying Polynomials
Polynomials.
EXPONENT RULES Why are they important? Try some:.
Objective The student will be able to:
Objective The student will be able to:
Objective multiply two polynomials using the FOIL method and the distributive property.
There are three techniques you can use for multiplying polynomials.
There are three techniques you can use for multiplying polynomials.
Objective The student will be able to:
Warm up: Match: Constant Linear Quadratic Cubic x3 – 2x 7
Objective The student will be able to:
Objective The student will be able to:
Ch Part 1 Multiplying Polynomials
Objective The student will be able to:
Bell Work Get out your bell work paper Write (scrap paper project) for Tuesday’s bell work Wait for instructions.
Objective The student will be able to:
Multiplying Polynomials
Essential Question.
Objective The student will be able to:
Presentation transcript:

Objective: The student will be able to: multiply two polynomials using the FOIL method, Box method, and the distributive property

3 techniques for multiplying polynomials: 1)Distributive Property 2)FOIL (First, Outer, Inner, Last terms) 3)Box Method

1. Multiply. (2x + 3)(5x + 8) Distributive Property: Using the distributive property, multiply 2x(5x + 8) + 3(5x + 8). 10x x + 15x + 24 Combine like terms. 10x x + 24

The FOIL method is ONLY used when you multiply 2 binomials. It is an acronym and tells you which terms to multiply. 2. Use the FOIL method to multiply the following binomials: (y + 3)(y + 7).

(y + 3)(y + 7). F tells you to multiply the FIRST terms of each binomial. y2y2

(y + 3)(y + 7). O tells you to multiply the OUTER terms of each binomial. y 2 + 7y

(y + 3)(y + 7). I tells you to multiply the INNER terms of each binomial. y 2 + 7y + 3y

(y + 3)(y + 7). L tells you to multiply the LAST terms of each binomial. y 2 + 7y + 3y + 21 Combine like terms. y y + 21

The third method is the Box Method. This method works for every problem! Here’s how you do it. Multiply (3x – 5)(5x + 2) Draw a box. Write a polynomial on the top and side of a box. It does not matter which goes where. 3x-5 5x +2

3. Multiply (3x - 5)(5x + 2) First terms: Outer terms: Inner terms: Last terms: Combine like terms. 15x x – 10 3x-5 5x +2 15x 2 +6x -25x x 2 +6x -25x -10

Guided Practice Multiply (2a – 3b)(2a + 4b) 1.4a ab – 12b 2 2.4a 2 – 14ab – 12b 2 3.4a 2 + 8ab – 6ba – 12b 2 4.4a 2 + 2ab – 12b 2 5.4a 2 – 2ab – 12b 2

5. Multiply (2x - 5)(x 2 - 5x + 4) You cannot use FOIL because they are not BOTH binomials. You must use the distributive property or box method. 2x(x 2 - 5x + 4) - 5(x 2 - 5x + 4) 2x x 2 + 8x - 5x x - 20 Group and combine like terms. 2x x 2 - 5x 2 + 8x + 25x x x x - 20

x2x2 -5x+4 2x Multiply (2x - 5)(x 2 - 5x + 4) 2x 3 -5x 2 -10x 2 +25x +8x -20

x2x2 -5x+4 2x Multiply (2x - 5)(x 2 - 5x + 4) Combine like terms 2x 3 -5x 2 -10x 2 +25x +8x -20 2x 3 – 15x x - 20

Independent Practice Multiply (2p + 1)(p 2 – 3p + 4)