Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology SEVENTH EDITION Elaine N. Marieb Katja Hoehn PowerPoint.

Slides:



Advertisements
Similar presentations
THE NERVOUS SYSTEM PART 1 CHAPTER 11.
Advertisements

The Nervous System.
11 Fundamentals of the Nervous System and Nervous Tissue: Revised by Dr. Par Mohammadian.
Fundamentals of the Nervous System and Nervous Tissue: Part A
Wednesday and Thursday Nerve Firing Friday Assess – and Read
Fundamentals of the Nervous System and Nervous Tissue
Fundamentals of the Nervous System and Nervous Tissue
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings  Sensory (afferent) division  Sensory afferent fibers – carry impulses from.
Fundamentals of the Nervous System and Nervous Tissue: Part A
Chapter Eleven Exam Four Material Chapters 11, 12, &13.
Nervous System The master controlling and communicating system of the body Functions Sensory input – monitoring stimuli Integration – interpretation of.
Fundamentals of the Nervous System and Nervous Tissue Part A
This week: Monday and Tuesday – Nervous System Overview (Fucntions, Histology, Cell types) Wednesday and Thursday Nerve Firing Friday Assess – and Read.
Warm-Up Outline pages The Nervous System Chapter 7.
Functions of the Nervous System
Essentials of Anatomy and Physiology Fifth edition Seeley, Stephens and Tate Slide 2.1 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin.
The Nervous System The master controlling and communicating system of the body Method of communication? Electrical impulses.
The Nervous System.
© 2013 Pearson Education, Inc. The Nervous System Master controlling and communicating system of body Cells communicate via electrical and chemical signals.
Fundamentals of the Nervous System and Nervous Tissue
Central nervous system (CNS)
Functions of the Nervous System
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Nervous System  The master controlling and communicating system of the body.
Human Anatomy & Physiology FIFTH EDITION Elaine N. Marieb PowerPoint ® Lecture Slide Presentation by Vince Austin Copyright © 2003 Pearson Education, Inc.
Histology of Nervous Tissue PROF. DR. FAUZIAH OTHMAN DEPT OF HUMAN ANATOMY.
PowerPoint ® Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Copyright © 2009 Pearson Education, Inc., publishing.
ELAINE N. MARIEB EIGHTH EDITION 7 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 11 Fundamentals of the Nervous System and Neural Tissue Part A.
11 Fundamentals of the Nervous System and Nervous Tissue: Part A.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology SEVENTH EDITION Elaine N. Marieb Katja Hoehn PowerPoint.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology SEVENTH EDITION Elaine N. Marieb Katja Hoehn PowerPoint.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 7.1 – 7.22 Seventh Edition Elaine.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Elaine N. Marieb Chapter 7 The Nervous.
Chapter 10 Nervous System
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 7.1 – 7.22 Seventh Edition Elaine.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology SEVENTH EDITION Elaine N. Marieb Katja Hoehn PowerPoint.
Chapter 7 The Nervous System. Functions of the Nervous System 1. Sensory input – gathering information  monitor changes inside and outside the body 
The Nervous System Chapter 9. Nervous System The master controlling and communicating system of the body Functions: – Sensory input – monitoring stimuli.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 8 Fundamentals of the.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 7.1 – 7.22 Seventh Edition Elaine.
The Nervous System maintains homeostasis and responds to stimuli faster than any other system! Part A. Organization Part B. Neural Tissue Chapter 12 Organization.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
11 Fundamentals of the Nervous System and Nervous Tissue: Part A.
Copyright © 2010 Pearson Education, Inc. THE NERVOUS SYSTEM Ch. 7.
ELAINE N. MARIEB EIGHTH EDITION 7 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
ELAINE N. MARIEB EIGHTH EDITION 7 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
ELAINE N. MARIEB EIGHTH EDITION 7 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
CH 10 Functions of the Nervous System The master controlling and communicating system of the body Functions 1.Sensory input: detects external and internal.
From Marieb Human Anatoy & Physiology Textbook
Fundamentals of the Nervous System and Nervous Tissue.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
Fundamentals of the Nervous System and Nervous Tissue Part A
Fundamentals of the Nervous System and Nervous Tissue
Chapter 7 The Nervous System
Nervous System The master controlling and communicating system of the body Functions Sensory input – monitoring stimuli Integration – interpretation of.
Ch. 7a The nervous system.
Chapter 7 The Nervous System
Functions of the Nervous System
Chapter 7 The Nervous System
Fundamentals of the Nervous System and Nervous Tissue
The master controlling and communicating system of the body
11 Fundamentals of the Nervous System and Nervous Tissue: Part A.
Exam Four, Packet One Nervous System
Chapter 7 The Nervous System
Fundamentals of the Nervous System and Nervous Tissue
Fundamentals of the Nervous System and Nervous Tissue: Part A
Chapter 7 The Nervous System
Chapter 7 The Nervous System
chapter 11-1: intro to nervous system
Fundamentals of the Nervous System and Nervous Tissue
Presentation transcript:

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology SEVENTH EDITION Elaine N. Marieb Katja Hoehn PowerPoint ® Lecture Slides prepared by Vince Austin, Bluegrass Technical and Community College C H A P T E R 11 Fundamentals of the Nervous System and Nervous Tissue P A R T A

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Nervous System  The master controlling and communicating system of the body  Functions  Sensory input – monitoring stimuli  Integration – interpretation of sensory input  Motor output – response to stimuli

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Nervous System Figure 11.1

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Organization of the Nervous System  Central nervous system (CNS)  Brain and spinal cord  Integration and command center  Peripheral nervous system (PNS)  Paired spinal and cranial nerves  Carries messages to and from the spinal cord and brain

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Peripheral Nervous System (PNS): Two Functional Divisions  Sensory (afferent) division  Sensory afferent fibers – carry impulses from skin, skeletal muscles, and joints to the brain  Visceral afferent fibers – transmit impulses from visceral organs to the brain  Motor (efferent) division  Transmits impulses from the CNS to effector organs

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Motor Division: Two Main Parts  Somatic nervous system  Conscious control of skeletal muscles  Autonomic nervous system (ANS)  Regulates smooth muscle, cardiac muscle, and glands  Divisions – sympathetic and parasympathetic

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Histology of Nerve Tissue  The two principal cell types of the nervous system are:  Neurons – excitable cells that transmit electrical signals  Supporting cells – cells that surround and wrap neurons

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Supporting Cells: Neuroglia  The supporting cells (neuroglia or glial cells):  Provide a supportive scaffolding for neurons  Segregate and insulate neurons  Guide young neurons to the proper connections  Promote health and growth

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Astrocytes  Most abundant, versatile, and highly branched glial cells  They cling to neurons and their synaptic endings, and cover capillaries

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Astrocytes  Functionally, they:  Support and brace neurons  Anchor neurons to their nutrient supplies  Guide migration of young neurons  Control the chemical environment

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Astrocytes Figure 11.3a

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Microglia and Ependymal Cells  Microglia – small, ovoid cells with spiny processes  Phagocytes that monitor the health of neurons  Ependymal cells – range in shape from squamous to columnar  They line the central cavities of the brain and spinal column

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Microglia and Ependymal Cells Figure 11.3b, c

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Oligodendrocytes, Schwann Cells, and Satellite Cells  Oligodendrocytes – branched cells that wrap CNS nerve fibers  Schwann cells (neurolemmocytes) – surround fibers of the PNS  Satellite cells surround neuron cell bodies with ganglia

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Oligodendrocytes, Schwann Cells, and Satellite Cells Figure 11.3d, e

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Neurons (Nerve Cells)  Structural units of the nervous system  Composed of a body, axon, and dendrites  Long-lived, amitotic, and have a high metabolic rate  Their plasma membrane function in:  Electrical signaling  Cell-to-cell signaling during development PLAY InterActive Physiology ®: Nervous System I, Anatomy Review, page 4

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Neurons (Nerve Cells) Figure 11.4b

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Nerve Cell Body (Perikaryon or Soma)  Contains the nucleus and a nucleolus  Is the major biosynthetic center  Is the focal point for the outgrowth of neuronal processes  Has no centrioles (hence its amitotic nature)  Has well-developed Nissl bodies (rough ER)  Contains an axon hillock – cone-shaped area from which axons arise

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Processes  Armlike extensions from the soma  Called tracts in the CNS and nerves in the PNS  There are two types: axons and dendrites

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Dendrites of Motor Neurons  Short, tapering, and diffusely branched processes  They are the receptive, or input, regions of the neuron  Electrical signals are conveyed as graded potentials (not action potentials)

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Axons: Structure  Slender processes of uniform diameter arising from the hillock  Long axons are called nerve fibers  Usually there is only one unbranched axon per neuron  Rare branches, if present, are called axon collaterals  Axonal terminal – branched terminus of an axon

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Axons: Function  Generate and transmit action potentials  Secrete neurotransmitters from the axonal terminals  Movement along axons occurs in two ways  Anterograde — toward axonal terminal  Retrograde — away from axonal terminal

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Myelin Sheath  Whitish, fatty (protein-lipoid), segmented sheath around most long axons  It functions to:  Protect the axon  Electrically insulate fibers from one another  Increase the speed of nerve impulse transmission

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Myelin Sheath and Neurilemma: Formation  Formed by Schwann cells in the PNS  A Schwann cell:  Envelopes an axon in a trough  Encloses the axon with its plasma membrane  Has concentric layers of membrane that make up the myelin sheath  Neurilemma – remaining nucleus and cytoplasm of a Schwann cell

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Myelin Sheath and Neurilemma: Formation PLAY InterActive Physiology ®: Nervous System I, Anatomy Review, page 10 Figure 11.5a–c

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Nodes of Ranvier (Neurofibral Nodes)  Gaps in the myelin sheath between adjacent Schwann cells  They are the sites where axon collaterals can emerge PLAY InterActive Physiology ®: Nervous System I, Anatomy Review, page 11

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Unmyelinated Axons  A Schwann cell surrounds nerve fibers but coiling does not take place  Schwann cells partially enclose 15 or more axons

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Axons of the CNS  Both myelinated and unmyelinated fibers are present  Myelin sheaths are formed by oligodendrocytes  Nodes of Ranvier are widely spaced  There is no neurilemma

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Regions of the Brain and Spinal Cord  White matter – dense collections of myelinated fibers  Gray matter – mostly soma and unmyelinated fibers

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Neuron Classification  Structural:  Multipolar — three or more processes  Bipolar — two processes (axon and dendrite)  Unipolar — single, short process

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Neuron Classification  Functional:  Sensory (afferent) — transmit impulses toward the CNS  Motor (efferent) — carry impulses away from the CNS  Interneurons (association neurons) — shuttle signals through CNS pathways

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Comparison of Structural Classes of Neurons Table

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Comparison of Structural Classes of Neurons Table

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Comparison of Structural Classes of Neurons Table

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Neurophysiology  Neurons are highly irritable  Action potentials, or nerve impulses, are:  Electrical impulses carried along the length of axons  Always the same regardless of stimulus  The underlying functional feature of the nervous system