Introduction to Information Retrieval Introduction to Information Retrieval CS276 Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan.

Slides:



Advertisements
Similar presentations
Advanced topics in Computer Science Jiaheng Lu Department of Computer Science Renmin University of China
Advertisements

Introduction to Information Retrieval Introduction to Information Retrieval Hinrich Schütze and Christina Lioma Lecture 1: Boolean Retrieval 1.
CS276A Text Retrieval and Mining Lecture 1. Query Which plays of Shakespeare contain the words Brutus AND Caesar but NOT Calpurnia? One could grep all.
Adapted from Information Retrieval and Web Search
Srihari-CSE535-Spring2008 CSE 535 Information Retrieval Lecture 2: Boolean Retrieval Model.
Boolean Retrieval Lecture 2: Boolean Retrieval Web Search and Mining.
Introduction to Information Retrieval Introduction to Information Retrieval Introducing Information Retrieval and Web Search.
Digital Libraries: Steps toward information finding Many slides in this presentation are from Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze,
CpSc 881: Information Retrieval
Information Retrieval
CS276 Information Retrieval and Web Search Lecture 1: Boolean retrieval.
Introduction to IR Systems: Supporting Boolean Text Search 198:541.
Information Retrieval using the Boolean Model. Query Which plays of Shakespeare contain the words Brutus AND Caesar but NOT Calpurnia? Could grep all.
Srihari-CSE535-Spring2008 CSE 535 Information Retrieval Chapter 1: Introduction to IR.
1 CSCI 5417 Information Retrieval Systems Lecture 1 8/23/2011 Introduction.
PrasadL3InvertedIndex1 Inverted Index Construction Adapted from Lectures by Prabhakar Raghavan (Yahoo and Stanford) and Christopher Manning (Stanford)
Introducing Information Retrieval and Web Search
Introduction to Information Retrieval Acknowledgements to Pandu Nayak and Prabhakar Raghavan of Stanford, Hinrich Schütze and Christina Lioma of Stutgart,
PrasadL3InvertedIndex1 Inverted Index Construction Adapted from Lectures by Prabhakar Raghavan (Yahoo and Stanford) and Christopher Manning (Stanford)
Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 1 Boolean retrieval.
Information Retrieval and Data Mining (AT71. 07) Comp. Sc. and Inf
Introduction to Information Retrieval Introduction to Information Retrieval cs458 Introduction David Kauchak adapted from:
LIS618 lecture 2 the Boolean model Thomas Krichel
Introduction to Information Retrieval Introduction to Information Retrieval Modified from Stanford CS276 slides Chap. 1: Boolean retrieval.
Modern Information Retrieval Lecture 3: Boolean Retrieval.
Introduction to Information Retrieval Introduction to Information Retrieval COMP4201 Information Retrieval and Search Engines Lecture 1 Boolean retrieval.
Introduction to Information Retrieval Introduction to Information Retrieval Information Retrieval and Web Search Lecture 1: Introduction and Boolean retrieval.
Introduction to Information Retrival Slides are adapted from stanford CS276.
IR Paolo Ferragina Dipartimento di Informatica Università di Pisa.
ITCS 6265 IR & Web Mining ITCS 6265/8265: Advanced Topics in KDD --- Information Retrieval and Web Mining Lecture 1 Boolean retrieval UNC Charlotte, Fall.
Text Retrieval and Text Databases Based on Christopher and Raghavan’s slides.
Introduction to Information Retrieval Introduction to Information Retrieval CS276 Information Retrieval and Web Search Christopher Manning and Prabhakar.
CES 514 – Data Mining Lec 2, Feb 10 Spring 2010 Sonoma State University.
1 CS276 Information Retrieval and Web Search Lecture 1: Introduction.
Introduction to Information Retrieval CSE 538 MRS BOOK – CHAPTER I Boolean Model 1.
Information Retrieval Lecture 1. Query Which plays of Shakespeare contain the words Brutus AND Caesar but NOT Calpurnia? Could grep all of Shakespeare’s.
Introduction to Information Retrieval Introduction to Information Retrieval CS276 Information Retrieval and Web Search Christopher Manning and Prabhakar.
1. L01: Corpuses, Terms and Search Basic terminology The need for unstructured text search Boolean Retrieval Model Algorithms for compressing data Algorithms.
1 Information Retrieval LECTURE 1 : Introduction.
Introduction to Information Retrieval Introduction to Information Retrieval Modified from Stanford CS276 slides Chap. 1: Boolean retrieval.
Introduction to Information Retrieval Introduction to Information Retrieval cs160 Introduction David Kauchak adapted from:
Introduction to Information Retrieval Boolean Retrieval.
CS276 Information Retrieval and Web Search Lecture 1: Boolean retrieval.
Introduction to Information Retrieval Introduction to Information Retrieval Lecture 1: Boolean retrieval.
Information Retrieval and Web Search Boolean retrieval Instructor: Rada Mihalcea (Note: some of the slides in this set have been adapted from a course.
Introduction to Information Retrieval Introduction to Information Retrieval Introducing Information Retrieval and Web Search.
Introduction to Information Retrieval Introducing Information Retrieval and Web Search.
Module 2: Boolean retrieval. Introduction to Information Retrieval Information Retrieval  Information Retrieval (IR) is finding material (usually documents)
CS315 Introduction to Information Retrieval Boolean Search 1.
CS 6633 資訊檢索 Information Retrieval and Web Search Lecture 1: Boolean retrieval Based on a ppt file by HinrichSchütze.
Introduction to Information Retrieval Introduction to Information Retrieval CS276 Information Retrieval and Web Search Christopher Manning and Prabhakar.
Take-away Administrativa
Large Scale Search: Inverted Index, etc.
CS122B: Projects in Databases and Web Applications Winter 2017
Lecture 1: Introduction and the Boolean Model Information Retrieval
COIS 442 Foundations on IR Information Retrieval and Web Search
Slides from Book: Christopher D
Modified by Dongwon Lee from slides by
정보 검색 특론 Information Retrieval and Web Search
Boolean Retrieval.
Information Retrieval and Data Mining (AT71. 07) Comp. Sc. and Inf
Boolean Retrieval.
Information Retrieval and Web Search Lecture 1: Boolean retrieval
Information Retrieval
Boolean Retrieval.
Introducing Information Retrieval and Web Search
CS276 Information Retrieval and Web Search
Introducing Information Retrieval and Web Search
Inverted Index Construction
Introducing Information Retrieval and Web Search
Presentation transcript:

Introduction to Information Retrieval Introduction to Information Retrieval CS276 Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan Lecture 1: Boolean retrieval

Introduction to Information Retrieval Information Retrieval  Information Retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers). 2

Introduction to Information Retrieval Unstructured (text) vs. structured (database) data in

Introduction to Information Retrieval Unstructured (text) vs. structured (database) data in

Introduction to Information Retrieval Unstructured data in 1680  Which plays of Shakespeare contain the words Brutus AND Caesar but NOT Calpurnia?  One could grep all of Shakespeare’s plays for Brutus and Caesar, then strip out lines containing Calpurnia?  Why is that not the answer?  Slow (for large corpora)  NOT Calpurnia is non-trivial  Other operations (e.g., find the word Romans near countrymen) not feasible  Ranked retrieval (best documents to return)  Later lectures 5 Sec. 1.1

Introduction to Information Retrieval Term-document incidence 1 if play contains word, 0 otherwise Brutus AND Caesar BUT NOT Calpurnia Sec. 1.1

Introduction to Information Retrieval Incidence vectors  So we have a 0/1 vector for each term.  To answer query: take the vectors for Brutus, Caesar and Calpurnia (complemented)  bitwise AND.  AND AND = Sec. 1.1

Introduction to Information Retrieval Answers to query  Antony and Cleopatra, Act III, Scene ii Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus, When Antony found Julius Caesar dead, He cried almost to roaring; and he wept When at Philippi he found Brutus slain.  Hamlet, Act III, Scene ii Lord Polonius: I did enact Julius Caesar I was killed i' the Capitol; Brutus killed me. 8 Sec. 1.1

Introduction to Information Retrieval Basic assumptions of Information Retrieval  Collection: Fixed set of documents  Goal: Retrieve documents with information that is relevant to the user’s information need and helps the user complete a task 9 Sec. 1.1

Introduction to Information Retrieval The classic search model Corpus TASK Info Need Query Verbal form Results SEARCH ENGINE Query Refinement Get rid of mice in a politically correct way Info about removing mice without killing them How do I trap mice alive? mouse trap Misconception?Mistranslation?Misformulation?

Introduction to Information Retrieval How good are the retrieved docs?  Precision : Fraction of retrieved docs that are relevant to user’s information need  Recall : Fraction of relevant docs in collection that are retrieved  More precise definitions and measurements to follow in later lectures 11 Sec. 1.1

Introduction to Information Retrieval Bigger collections  Consider N = 1 million documents, each with about 1000 words.  Avg 6 bytes/word including spaces/punctuation  6GB of data in the documents.  Say there are M = 500K distinct terms among these. 12 Sec. 1.1

Introduction to Information Retrieval Can’t build the matrix  500K x 1M matrix has half-a-trillion 0’s and 1’s.  But it has no more than one billion 1’s.  matrix is extremely sparse.  What’s a better representation?  We only record the 1 positions. 13 Why? Sec. 1.1

Introduction to Information Retrieval Inverted index  For each term t, we must store a list of all documents that contain t.  Identify each by a docID, a document serial number  Can we use fixed-size arrays for this? 14 Brutus Calpurnia Caesar What happens if the word Caesar is added to document 14? Sec

Introduction to Information Retrieval Inverted index  We need variable-size postings lists  On disk, a continuous run of postings is normal and best  In memory, can use linked lists or variable length arrays  Some tradeoffs in size/ease of insertion 15 Dictionary Postings Sorted by docID (more later on why). Posting Sec. 1.2 Brutus Calpurnia Caesar

Introduction to Information Retrieval Tokenizer Token stream Friends RomansCountrymen Inverted index construction Linguistic modules Modified tokens friend romancountryman Indexer Inverted index friend roman countryman More on these later. Documents to be indexed Friends, Romans, countrymen. Sec. 1.2

Introduction to Information Retrieval Indexer steps: Token sequence  Sequence of (Modified token, Document ID) pairs. I did enact Julius Caesar I was killed i' the Capitol; Brutus killed me. Doc 1 So let it be with Caesar. The noble Brutus hath told you Caesar was ambitious Doc 2 Sec. 1.2

Introduction to Information Retrieval Indexer steps: Sort  Sort by terms  And then docID Core indexing step Sec. 1.2

Introduction to Information Retrieval Indexer steps: Dictionary & Postings  Multiple term entries in a single document are merged.  Split into Dictionary and Postings  Doc. frequency information is added. Why frequency? Will discuss later. Sec. 1.2

Introduction to Information Retrieval Where do we pay in storage? 20 Pointers Terms and counts Later in the course: How do we index efficiently? How much storage do we need? Sec. 1.2 Lists of docIDs

Introduction to Information Retrieval The index we just built  How do we process a query?  Later - what kinds of queries can we process? 21 Today’s focus Sec. 1.3

Introduction to Information Retrieval Query processing: AND  Consider processing the query: Brutus AND Caesar  Locate Brutus in the Dictionary;  Retrieve its postings.  Locate Caesar in the Dictionary;  Retrieve its postings.  “Merge” the two postings: Brutus Caesar Sec. 1.3

Introduction to Information Retrieval The merge  Walk through the two postings simultaneously, in time linear in the total number of postings entries Brutus Caesar 2 8 If list lengths are x and y, merge takes O(x+y) operations. Crucial: postings sorted by docID. Sec. 1.3

Introduction to Information Retrieval Intersecting two postings lists (a “merge” algorithm) 24

Introduction to Information Retrieval Boolean queries: Exact match  The Boolean retrieval model is being able to ask a query that is a Boolean expression:  Boolean Queries use AND, OR and NOT to join query terms  Views each document as a set of words  Is precise: document matches condition or not.  Perhaps the simplest model to build an IR system on  Primary commercial retrieval tool for 3 decades.  Many search systems you still use are Boolean:  , library catalog, Mac OS X Spotlight 25 Sec. 1.3