L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
Professor Ronald L. Carter
Advertisements

EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
Experiment 5 EE 312 Basic Electronics Instrumentation Laboratory Wednesday, September 27,
Chapter 3 – Diodes Introduction Textbook CD
Ideal Diode Equation. Important Points of This Lecture There are several different techniques that can be used to determine the diode voltage and current.
L14 March 31 EE5342 – Semiconductor Device Modeling and Characterization Lecture 14 - Spring 2005 Professor Ronald L. Carter
EXAMPLE 9.1 OBJECTIVE pn(xn) = 2.59  1014 cm3
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 - Fall 2009 Professor Ronald L. Carter
L08 07Feb021 EE Semiconductor Electronics Design Project Spring Lecture 08 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 12 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 22 – Spring 2011 Professor Ronald L. Carter
L9 February 151 Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2005 Professor Ronald L. Carter
L19 March 291 EE5342 – Semiconductor Device Modeling and Characterization Lecture 19 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 10 Spring 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L17 March 221 EE5342 – Semiconductor Device Modeling and Characterization Lecture 17 - Spring 2005 Professor Ronald L. Carter
L09 12Feb021 Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2002 Professor Ronald L. Carter
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
ECE 333 Linear Electronics
Professor Ronald L. Carter
Diodes Introduction Textbook CD
Recall-Lecture 4 Current generated due to two main factors
Professor Ronald L. Carter
Professor Ronald L. Carter
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 5 OUTLINE PN Junction Diodes I/V Capacitance Reverse Breakdown
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Changing Device Parameters in PSpice
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture content largely provided by
EE 5340 Semiconductor Device Theory Lecture 12 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011
Lecture content largely provided by
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 3 OUTLINE Semiconductor Basics (cont’d) PN Junction Diodes
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
Chapter 3 Solid-State Diodes and Diode Circuits
Presentation transcript:

L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter

L11 February 242 Dinj –IS –N ~ 1 –IKF, VKF, N ~ 1 Drec –ISR –NR ~ 2 SPICE Diode Static Model VdVd i D *RS V ext = v D + i D *RS

L11 February 243 PARAMETER definition and units default value IS saturation current amp 1E-14 ISR recombination current parameter amp 0.0 IKF high-injection knee current amp infinite N emission coefficient 1.0 NR emission coefficient for isr 2.0 RS parasitic resistance ohm 0.0EG bandgap voltage (barrier height) eV 1.11 XTI IS temperature exponent 3.0 BV reverse breakdown knee voltage volt infinite IBV reverse breakdown knee current amp 1E-10 NBV reverse breakdown ideality factor 1.0 SPICE Diode DC Model Params. 1

L11 February 244 Id = area·(Ifwd - Irev) Ifwd = forward current = Inrm·Kinj + Irec·Kgen Inrm = normal current = IS·(eVd/(N·Vt)-1) if: IKF > 0 then: Kinj = high-injection factor = (IKF/(IKF+Inrm))^1/2 else: Kinj = 1 Irec = recombination current = ISR·(eVd/(NR·Vt)-1) Kgen = generation factor = ((1-Vd/VJ)^ )M/2 Irev = reverse current = Irevhigh + Irevlow Irevhigh = IBV·e-(Vd+BV)/(NBV·Vt) Irevlow = IBVL·e-(Vd+BV)/(NBVL·Vt) SPICE Diode DC Model Eqns. 1

L11 February 245 V ext ln(I) data Effect of R s VKF Plot of SPICE D.C. V a > 0 current equations

L11 February 246 Static Model Eqns. Parameter Extraction In any region we can approximate the i-V relationship as a single exponential. iD ~ Is eff  (exp (Vd/(N eff  Vt)) - 1) {diD/dVd}/iD = d[ln(iD)]/dVd = 1/(N eff  Vt) so N eff = {dVd/d[ln(iD)]}/Vt, and ln(IS eff ). = ln(iD) - Vd/(N  Vt). (Note treat iD, Vt, etc., as normalized to 1A, 1V, respectively)

L11 February 247 Diode Par. Extraction 1/Reff iD ISeff

L11 February 248 Results of Parameter Extraction At Vd = 0.2 V, NReff = 1.97, ISReff = 8.99E-11 A. At Vd = V, Neff = 1.01, ISeff = 1.35 E-13 A. At Vd = 0.9 V, RSeff = Ohm Compare to.model Dbreak D( Is=1e-13 N=1 Rs=.5 Ikf=5m Isr=.11n Nr=2)

L11 February 249 Hints for RS and NF parameter extraction In the region where v D > VKF. Defining v D = v Dext - i D *RS and I HLI = [IS  IKF] 1/2. i D = I HLI exp (v D /2NV t ) + ISRexp (v D /NRV t ) di D /di D = 1  (i D /2NV t )(dv Dext /di D - RS) + … Thus, for v D > VKF (highest voltages only) y plot i D -1 vs. (dv Dext /di D ) to get a line with y slope = (2NV t ) -1, intercept = - RS/(2NV t )

L11 February 2410 PARAMETER definition and units default value TT transit time sec 0.0 CJO zero-bias p-n capacitance farad 0.0 M p-n grading coefficient 0.5 FC forward-bias depletion capacitance coeff 0.5 VJ p-n potential volt 1.0 SPICE Diode Capacitance Pars. 1

L11 February 2411 Cd = Ct + area·Cj Ct = transit time capacitance = TT·Gd Gd = DC conductance = area * d (Inrm Kinj + Irec Kgen)/dVd Kinj = high-injection factor Cj = junction capacitance IF: Vd < FC·VJ Cj = CJO*(1-Vd/VJ)^(-M) IF: Vd > FC·VJ Cj = CJO*(1-FC)^(-1-M)·(1-FC·(1+M)+M·Vd/VJ) SPICE Diode Capacitance Eqns. 1

L11 February 2412 Junction Capacitance A plot of [Cj] -1/M vs. V d has Slope = -[(CJO) 1/M /VJ] -1 vertical axis intercept = [CJO] -2 horizontal axis intercept = VJ Cj -1/M VJ VdVd CJO -1/M

L11 February 2413 Junction Width and Debye Length L D estimates the transition length of a step-junction DR (concentrations N a and N d with N eff = N a N d /(N a +N d )). Thus, For V a =0, & 1E13 < N a,N d < 1E19 cm -3 13% DA is OK

L11 February 2414 Junction Capacitance Adapted from Figure 1-16 in Text 2 Cj = CJO/(1-Vd/VJ)^M Cj = CJO/(1-FC)^(1+M)* (1-FC·(1+M)+M·Vd/VJ) VJFC*VJ

L11 February 2415 SPICE Diode A.C. Parameters

L11 February 2416 SPICE Diode Static I-V Id,ext (A) Vd,ext (V)

L11 February 2417 Small signal diode Z-parameter**

L11 February 2418 SPICE Diode Re{Z} Re{Z} (Ohms) Frequency (Hz) CJ0 = 1E-12 VJ = 0.75 M = 0.5 TT = 1E-9 (2  TT) -1 1  A 100 pA 1 nA 10 nA 100 nA 10  A 100  A 1 mA 10 mA

L11 February 2419 PARAMETER definition and units default value XTI IS temperature exponent 3.0 TIKF ikf temperature coefficient (linear) °C TRS1 rs temperature coefficient (linear) °C TRS2 rs temperature coefficient (quadratic) °C TBV1 bv temperature coefficient (linear) °C TBV2 bv temperature coefficient (quadratic) °C T_ABS absolute temperature °C T_MEASURED measured temperature °C T_REL_GLOBAL relative to current temperature °C T_REL_LOCAL Relative to AKO model temperature °C SPICE Diode Temperature Pars. 1

L11 February 2420 SPICE Diode Temperature Eqs. 1

L11 February 2421 Corrections

L11 February 2422 References 1 OrCAD PSpice A/D Manual, Version 9.1, November, 1999, OrCAD, Inc. 2 Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993.