Trento, Feb.28, 2005 Workshop on p-type detectors 1 Comprehensive Radiation Damage Modeling of Silicon Detectors Petasecca M. 1,3, Moscatelli F. 1,2,3,

Slides:



Advertisements
Similar presentations
of Single-Type-Column 3D silicon detectors
Advertisements

Micron detector testing in Liverpool G. Casse – O. Lodge Laboratory, University of Liverpool.
8 th RD50 Workshop Prague June Università degli Studi Università degli Studi di Perugia di Perugia 1 Annealing effects on p + n junction 4H-SiC.
Epitaxial Silicon Detectors for Particle Tracking Overview on Radiation Tolerance at Extreme Hadron Fluence G. Lindström (a), E. Fretwurst (a), F. Hönniger.
TCT study of silicon epitaxial and MCZ detectors V. Eremin 1, M. Boscardin 2, M. Bruzzi 3, D. Creanza 4, A. Macchiolo 5, D. Menichelli 3, C. Piemonte 2,
Università degli Studi di Perugia Università degli Studi di Perugia IMM Bologna 1 Measurements and Simulations of Charge Collection Efficiency of p+/n.
Trapping in silicon detectors G. Kramberger Jožef Stefan Institute, Ljubljana Slovenia G. Kramberger, Trapping in silicon detectors, Aug , 2006,
3D simulations of device performance for 3D-Trench electrode detector Jianwei Chen a,b, Hao Ding a,b, Zheng Li a,b,c, *, Shaoan Yan a,b a Xiangtan University,
New approach to simulate radiation damage to single-crystal diamonds with SILVACO TCAD Florian Kassel, Moritz Guthoff, Anne Dabrowski, Wim de Boer.
F.R.Palomo, et al.MOS Capacitor DDD Dosimeter 1/13 RD50 Workshop - CERN – November 2012 MOS Capacitor Displacement Damage Dose (DDD) Dosimeter F.R.
Sensor simulation and position calibration for the CMS Pixel detector
CMS Pixel Simulation Vincenzo Chiochia
GaAs radiation imaging detectors with an active layer thickness up to 1 mm. D.L.Budnitsky, O.B.Koretskaya, V.A. Novikov, L.S.Okaevich A.I.Potapov, O.P.Tolbanov,
Vertex 2001 Brunnen, Switzerland Phil Allport Gianluigi Casse Ashley Greenall Salva Marti i Garcia Charge Collection Efficiency Studies with Irradiated.
Department of Physics VERTEX 2002 – Hawaii, 3-7 Nov Outline: Introduction ISE simulation of non-irradiated and irradiated devices Non-homogeneous.
TCAD for Atlas Planar Pixel Sensors
Characterization of 150  m thick epitaxial silicon pad detectors from different producers after 24 GeV/c proton irradiation Herbert Hoedlmoser (1), Michael.
EE415 VLSI Design The Devices: Diode [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
F.R.PalomoDevice Simulation Meeting 1/22 CERN 7th July New 3D Detectors.
11 th RD50 Workshop, CERN Nov Results with thin and standard p-type detectors after heavy neutron irradiation G. Casse.
RD50 Katharina Kaska1 Trento Workshop : Materials and basic measurement problems Katharina Kaska.
Study of leakage current and effective dopant concentration in irradiated epi-Si detectors I. Dolenc, V. Cindro, G. Kramberger, I. Mandić, M. Mikuž Jožef.
Study of Behaviour of n-in-p Silicon Sensor Structures Before and After Irradiation Y. Unno, S. Mitsui, Y. Ikegami, S. Terada, K. Nakamura (KEK), O. Jinnouchi,
TCAD Simulations of Radiation Damage Effects at High Fluences in Silicon Detectors with Sentaurus TCAD D. Passeri(1,2), F. Moscatelli(2,3), A. Morozzi(1,2),
J.Harkonen and Z.Li, LHCC open session, CERN, 24th November CERN RD39 Collaboration: Cryogenic Tracking Detectors RD39 Status Report 2004 Jaakko.
SILICON DETECTORS PART I Characteristics on semiconductors.
Summary of CMS 3D pixel sensors R&D Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
D. Menichelli, RD50, Hamburg, august TSC, DLTS and transient analysis in MCz silicon Detectors at different process temperature, irradiation.
1 Space charge sign inversion and electric field reconstruction in 24 GeV proton irradiated MCZ Si p + -n(TD)-n + detectors processed via thermal donor.
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
Analysis of Edge and Surface TCTs for Irradiated 3D Silicon Strip Detectors Graeme Stewart a, R. Bates a, C. Corral b, M. Fantoba b, G. Kramberger c, G.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
Simulations of 3D detectors
Update on TCAD Simulation Mathieu Benoit. Introduction The Synopsis Sentaurus Simulation tool – Licenses at CERN – Integration in LXBatch vs Engineering.
Charge Collection and Trapping in Epitaxial Silicon Detectors after Neutron-Irradiation Thomas Pöhlsen, Julian Becker, Eckhart Fretwurst, Robert Klanner,
G. Steinbrück, University of Hamburg, SLHC Workshop, Perugia, 3-4 April Epitaxial Silicon Detectors for Particle Tracking Overview on Radiation Tolerance.
New research activity “Silicon detectors modeling in RD50”: goals, tasks and the first steps Vladimir Eremin Ioffe Phisical – technical institute St. Petresburg,
INFN and University of Perugia Characterization of radiation damage effects in silicon detectors at High Fluence HL-LHC D. Passeri (1,2), F. Moscatelli.
Inversion Study on MCz-n and MCz-p silicon PAD detectors irradiated with 24 GeV/c protons Nicola Pacifico Excerpt from the MSc thesis Tutors: Prof. Mauro.
TCT measurements with SCP slim edge strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko.
Annealing of CCE in HPK strip detectors irradiated with pions and neutrons Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko.
Simulations of Hadron Irradiation Effects for Si Sensors Using Effective Bulk Damage Model A. Bhardwaj 1, H. Neugebauer 2, R. Dalal 1, M. Moll 2, Geetika.
Ljubljiana, 29/02/2012 G.-F. Dalla Betta Surface effects in double-sided silicon 3D sensors fabricated at FBK at FBK Gian-Franco Dalla Betta a, M. Povoli.
Celso Figueiredo26/10/2015 Characterization and optimization of silicon sensors for intense radiation fields Traineeship project within the PH-DT-DD section.
21th RD50 Workshop, CERN, 14th – 16th November 2012 Charge carrier detrapping in irradiated silicon sensors after microsecond laser pulses Markus Gabrysch.
SMART Study of radiation damage induced by 24GeV/c and 26MeV protons on heavily irradiated MCz and FZ silicon detectors V. Radicci Dipartimento Interateneo.
The Sixth International "Hiroshima" Symposium Giulio Pellegrini Technology of p-type microstrip detectors with radiation hard p-spray, p-stop and moderate.
7 th RD50 Workshop CERN Geneva November Università degli Studi Università degli Studi di Perugia di Perugia 1 Radiation Hardness of Minimum.
TCAD Simulation – Semiconductor Technology Computer-Aided Design (TCAD) tool ENEXSS 5.5, developed by SELETE in Japan Device simulation part: HyDeLEOS.
Study on and 150  m thick p-type Epitaxial silicon pad detectors irradiated with protons and neutrons Eduardo del Castillo Sanchez, Manuel Fahrer,
RD50 RD50 Workhop: CERN Katharina Kaska Epitaxial silicon detectors irradiated with protons and neutrons Katharina Kaska, Michael Moll RD50 Workshop.
Studies on n and p-type MCz and FZ structures of the SMART Collaboration irradiated at fluences from 1.0 E+14 to 5.6E+15 p cm -2 RD50 Trento Workshop ITC-IRST.
6th Trento Workshop on Advanced Silicon Radiation Detectors1/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) J.P. Balbuena, G.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
Double Electric field Peak Simulation of Irradiated Detectors Using Silvaco Ashutosh Bhardwaj, Kirti Ranjan, Ranjeet Singh*, Ram K. Shivpuri Center for.
Deep Level Transient Spectroscopy study of 3D silicon Mahfuza Ahmed.
G. PellegriniInstituto de Microelectrónica de Barcelona Status of LGAD RD50 projects at CNM28th RD50 Workshop (Torino) 1 Status of LGAD RD50 projects at.
Charge collection in irradiated pixel sensors V. Chiochia a, C.Amsler a, D.Bortoletto c, L.Cremaldi d, S.Cucciarelli e, A.Dorokhov a,b*, C.Hörmann a,b,
June T-CAD Simulations of 3D Microstrip detectors a) Richard Bates b) J.P. Balbuena,C. Fleta, G. Pellegrini, M. Lozano c) U. Parzefall, M. Kohler,
Simulation results from double-sided and standard 3D detectors
Radiation Damage TCAD Analysis of Low Gain Avalanche Detectors
Characterization and modelling of signal dynamics in 3D-DDTC detectors
Modeling Radiation Damage Effects in Oxygenated Silicon Detectors
Radiation Damage TCAD Analysis of Low Gain Avalanche Detectors
PTI results on I(T) and E(x) simulations with two midgap energy levels
Study of radiation damage induced by 26MeV protons and reactor neutrons on heavily irradiated MCz, FZ and Epi silicon detectors N. Manna Dipartimento.
HG-Cal Simulation using Silvaco TCAD tool at Delhi University Chakresh Jain, Geetika Jain, Ranjeet Dalal, Ashutosh Bhardwaj, Kirti Ranjan CMS simulation.
TCAD Simulations of Silicon Detectors operating at High Fluences D
Vladimir Cindro, RD50 Workshop, Prague, June 26-28, 2006
Presentation transcript:

Trento, Feb.28, 2005 Workshop on p-type detectors 1 Comprehensive Radiation Damage Modeling of Silicon Detectors Petasecca M. 1,3, Moscatelli F. 1,2,3, Scarpello C. 1, Passeri D. 1,3, Pignatel G.U. 1,3 1 DIEI - Università di Perugia, via G.Duranti,93 - Italy 2 IMM-CNR sez.di Bologna, via Gobetti 101 – Italy 3 INFN sez. Perugia – via Pascoli, 10 – Italy In the framework of RD50-CERN Collaboration

2 OUTLINE development of the 3-level radiation damage model for n-type silicon development of the 3-level radiation damage model for n-type silicon development of the 2-level radiation damage model for p-type silicon development of the 2-level radiation damage model for p-type silicon simulation of Charge Collection Efficiency (CCE) in irradiated (n-type) silicon detectors simulation of Charge Collection Efficiency (CCE) in irradiated (n-type) silicon detectors

3 Simulation tool: ISE-TCAD – discrete time and space solution of drift/diffusion and continuity equations Damage modelling: - Deep levels: E t,  n and  p - Deep levels: E t,  n and  p - SRH statistics - SRH statistics - Uniform density of defect concentration - Uniform density of defect concentration Radiation damage Effects to simulate: - The increasing of the Leakage Current - The increasing of the Full Depletion Voltage - The decreasing of the Charge Collection Efficiency

4 Simulation setup Simulated device structure and parameters: Doping profiles: Doping profiles: N and P doped substrates (7  cm -3 )  6kΩcm. N and P doped substrates (7  cm -3 )  6kΩcm. Charge concentration at the silicon-oxide interface of : Charge concentration at the silicon-oxide interface of : 4  cm -3 pre-irradiation 4  cm -3 pre-irradiation 1  cm -3 post-irradiation 1  cm -3 post-irradiation Optimized variable mesh definition Optimized variable mesh definition Temperature = 300 K Temperature = 300 K D (thickness) = um D (thickness) = um Guard RingDiodeGuard Ring 6µm 40µm 15µm9µm D Back

5 Simulation setup Guard Ring Diode - Variable mesh definition:  the mesh is better refined in correspondence of the critical points of the device to improve simulator performance. - The typical electric field distribution at the depletion voltage of the diode.

6 Level [eV] Assignment σ n [cm -2 ] σ p [cm -2 ] η [cm -1 ] E c VV (-/0) 1· · * E c VVO (-/0) 1· · E v C i O i (+/0) 1· · The n-type (modified) 3-Level Radiation Damage Model* * Angarano, Bilei, Giorgi, Ciampolini, Mihul, Militaru, Passeri, Scorzoni, CERN, Geneve, CMS CR 2000/006, 2000 σ n/p [cm -2 ]: cross section η [cm -1 ]: introduction rate η * η=26 takes into account cluster defects

7 Level [eV] Assignment σ n [cm -2 ] σ p [cm -2 ] η [cm -1 ] E c VV (-/0) 1· · * E c VVO (-/0) 1· · E v C i O i (+/0) 1· · The n-type (modified) 3-Level Radiation Damage Model* * [Angarano, Bilei, Giorgi, Ciampolini, Mihul, Militaru, Passeri, Scorzoni, CERN, Geneve, CMS CR 2000/006, 2000] α [A/cm] simulated 5.25±0.02· α [A/cm] experimental* 5.4÷6.7· * η * η = 26 takes into account cluster defects α 80/60 [A/cm] ROSE-RD48 4.0·10 -17

8 (*) [N. Zangenberg, et al.,Nuc. Instr. And Meth B 186 (2002) 71-77] (*) [N. Zangenberg, et al.,Nuc. Instr. And Meth B 186 (2002) 71-77] [M. Ahmed, et al., Nuc. Instr. And Meth A 457 (2001) ] [M. Ahmed, et al., Nuc. Instr. And Meth A 457 (2001) ] Level*Ass. σ n [cm -2 ] Experimental* σ p [cm -2 ] Experimental* σ n [cm -2 ] [cm -2 ] **σ p [cm -2 ] η [cm -1 ] E c -0.42eV VV (-/0) 2· · β [cm -1 ] experimental 4,0±0,4 ·10 -3 ** 2 order of magnitude higher β [cm -1 ] simulated 3,72 ·10 -3 The p-type One-Level Radiation Damage Model Measures extracted from [M. Lozano, et al., RD50 workshop, Firenze, Oct 2004]

9 (*) [N. Zangenberg, et al.,Nuc. Instr. And Meth B 186 (2002) 71-77] [M. Ahmed, et al., Nuc. Instr. And Meth A 457 (2001) ] [M. Ahmed, et al., Nuc. Instr. And Meth A 457 (2001) ] Level*Ass. σ n [cm -2 ] Experimental* σ p [cm -2 ] Experimental* σ n [cm -2 ] [cm -2 ] σ p [cm -2 ] σ p [cm -2 ]η [cm -1 ] E c -0.42eV VV (-/0) 2· · α [A/cm] simulated 6,6 · α [A/cm] experimental 6,52±0,11 · The p-type One-Level Radiation Damage Model Measures extracted from [M. Lozano, et al., RD50 workshop, Firenze, Oct 2004]

10 The p-type Two-Level Radiation Damage Model [(**) Levels selected from: M. Ahmed, et al., Nuc. Instr. And Meth A 457 (2001) S.Pirolo et al., Nuc. Instr. And Meth. A 426 (1996) ] S.Pirolo et al., Nuc. Instr. And Meth. A 426 (1996) ] * 1 order of magnitude higher β [cm -1 ] experimental 4,0±0,4 ·10 -3 β [cm -1 ] simulated 3.98·10 -3 Level**Ass. σ n [cm -2 ] Experimental σ p [cm -2 ] Experimental σ n [cm -2 ] [cm -2 ] *σ p [cm -2 ] η [cm -1 ] E c eV VV (-/0) 2· · * E c eV VVV (-/0) 5· · * Measures extracted from [M. Lozano, et al., RD50 workshop, Firenze, Oct 2004] *η *η Moll = 0.9  1.8

11 α [A/cm] simulated 3.75· α [A/cm] reported (*?) 6,52±0,1 · Measures extracted from [M. Lozano, et al., RD50 workshop, Firenze, Oct 2004] The p-type Two-Level Radiation Damage Model Level**Ass. σ n [cm -2 ] Experimental σ p [cm -2 ] Experimental σ n [cm -2 ] [cm -2 ] *σ p [cm -2 ] η [cm -1 ] E c eV VV (-/0) 2· · E c eV VVV (-/0) 5· · [(**) Levels selected from: M. Ahmed, et al., Nuc. Instr. And Meth A 457 (2001) S.Pirolo et al., Nuc. Instr. And Meth. A 426 (1996) ] S.Pirolo et al., Nuc. Instr. And Meth. A 426 (1996) ] * 1 order of magnitude higher

12 LevelAss. σ n [cm -2 ] Experimental σ p [cm -2 ] Experimental σ n [cm -2 ] [cm -2 ] *σ p [cm -2 ] η [cm -1 ] E c -0.42eV VV (-/0) 2· · E c -0.46eV VVV (-/0) 5· · E v +0.36eV ? C i O i ? 2.5· · · · β [cm -1 ] experimental 4,0±0,4 ·10 -3 β [cm -1 ] simulated 3.98·10 -3 * 1 order of magnitude higher The p-type Three-Level Radiation Damage Model: no improvement due to the donor defect level α [A/cm] simulated 3.75· α [A/cm] experimental 6,52±0,11 · Measures extracted from [M. Lozano, et al., RD50 workshop, Firenze, Oct 2004]

13 CCE Simulation MIP: 80 e-h pairs/ µm cylinder diameter = 2µm

14 CCE Simulation

15 CCE Simulation

16 CCE Simulation

17 CCE Simulation

18 CCE Simulation

19 CCE Simulation

20 * Measurements from Allport, Casse et al. NIMA 501 (2003) CCE vs BIAS voltage for n-type silicon Simulation data well reproduce experimental* measure at the fluences of 1·10 14 n/cm 2 and 2.5·10 14 n/cm 2

21 CCE vs BIAS for n-type Simulation data at Fluence of 1·10 15 n/cm 2 and 1·10 16 n/cm 2 Problem: the diode collects charge also in the not depleted area. At a fluence of 5·10 14 : Simulated CCE = 75% Estimated (*) = 55% (*) [Bloch et al, NIMA 517 (2004) ]

22 CCE vs BIAS for n-type Discussion about the ISE T-CAD Recombination Time model Default parameters of the Scharfetter model: N REF =10 16 cm- 3, γ=1, τ min =0, τ max(e) =3 µs, τ max(h) =10 µs β e [ cm 2 /ns]β h [ cm 2 /ns] where From RD50 status Report (2004): change the N REF parameter in order to obtain the correct value of the recombination time (*) J.G.Fossum, D.S. Lee, Solid-State Electronics, vol.25,no.8 (1982).

23 Scharfetter ISE T-CAD Recombination Time model Default parameters: N REF =10 16 cm- 3, γ=1, τ min =0, τ max(e) =3 µs, τ max(h) =10 µs (one pole in the TF) Aim: modify/adapt the Scharfetter model to simulate the effect of deep- level defects on the reduction of carrier life-time

24 Conclusions Irradiated diodes have been analyzed considering a three levels simulation model for p-type and n-type Si substrates: The two-level model for the p-type and the three-level for n-type fit experimental data for the Leakage Current and Full Depletion Voltage The C i O i acceptor level for p-type silicon seems to be un-influential (at Room Temperature) The three-level for n-type fits CCE experimental data only for fluences up to 2.5·10 14 n/cm 2. Scharfetter recombination time empirical model can be eventually adapted to fit CCE experimental data at higher fluences (first good n/cm 2 ).