ASTROPHYSICAL NEUTRINOS STEEN HANNESTAD, Aarhus University GLA2011, JYVÄSKYLÄ e    

Slides:



Advertisements
Similar presentations
Georg Raffelt, MPI Physics, Munich 2 nd Schrödinger Lecture, University Vienna, 10 May 2011 Supernova Neutrinos Physics Opportunities with Supernova Neutrinos.
Advertisements

Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and.
Georg Raffelt, MPI Physics, Munich Neutrinos at the Forefront, Univ. de Lyon, 22–24 Oct 2012 Supernova Neutrinos Physics Opportunities with Supernova Neutrinos.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Physics Opportunities with
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
NEUTRINO PHYSICS FROM PRECISION COSMOLOGY STEEN HANNESTAD 17 AUGUST 2010 – UNIVERSENET, COPENHAGEN e    
G. ManganoThe Path to Neutrino Mass Workshop 1  -decaying nuclei as a tool to measure Relic Neutrinos Gianpiero Mangano INFN, Sezione di Napoli, Italy.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Damping of neutrino flavor conversion in the wake of the supernova shock wave by G.L. Fogli, E. Lisi, D. Montanino, A. Mirizzi Based on hep-ph/ :
IceCube IceCube Neutrino-Trigger network of optical telescopes Anna Franckowiak 1, Timo Griesel 2, Lutz Koepke 2, Marek Kowalski 1, Thomas Kowarik 2, Anna.
NEUTRINOS IN COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS ERICE, 17 SEPTEMBER 2005 e    
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
A LOOK INTO THE PHYSICS OF NEUTRINOS J A Grifols, UAB Viña del Mar, Dec 06.
J. Goodman – May 2003 Quarknet Symposium May 2003 Neutrinos, Dark Matter and the Cosmological Constant The Dark Side of the Universe Jordan Goodman University.
The neutrons detection involves the use of gadolinium which has the largest thermal neutron capture cross section ever observed. The neutron capture on.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
RELIC NEUTRINOS: NEUTRINO PROPERTIES FROM COSMOLOGY Sergio Pastor (IFIC) ν.
NEUTRINO PHYSICS AND COSMOLOGY STEEN HANNESTAD, Aarhus University BLOIS, 31 MAY 2012 e    
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
NEUTRINO PHYSICS FROM COSMOLOGY EVIDENCE FOR NEW PHYSICS? STEEN HANNESTAD, Aarhus University NuHorizons 2011 e    
Inflationary Freedom and Cosmological Neutrino Constraints Roland de Putter JPL/Caltech CosKASI 4/16/2014.
The Evolution of the Universe Nicola Loaring. The Big Bang According to scientists the Universe began ~15 billion years ago in a hot Big Bang. At creation.
SUPERNOVA NEUTRINOS AT ICARUS
TAUP2007 Sep , 2007 Sendai, Japan Shiou KAWAGOE The Graduate University for Advanced Studies (SOKENDAI) / NAOJ JSPS Research Fellow T. Kajino, The.
NEUTRINO PHYSICS AND COSMOLOGY STEEN HANNESTAD, Aarhus University COSMO, 14 SEPTEMBER 2012 e    
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
夏陽 悉尼大学悉尼天文研究所 2015 年 9 月 14 日 中国科学院卡弗里理论物理研究所 宇宙中微子.
Heidelberg, 9-12 November 2009 LAUNCH 09 Physics and astrophysics of SN neutrinos: What could we learn ? Alessandro MIRIZZI (Hamburg Universität)
NEUTRINO COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS LAUNCH WORKSHOP, 21 MARCH 2007 e    
University of Durham Institute for Computational Cosmology Carlos S. Frenk Institute for Computational Cosmology, Durham Galaxy clusters.
Dark Matter and Dark Energy components chapter 7 Lecture 4.
C. W. Kim KIAS The Johns Hopkins University Neutrino Physics and Cosmology SDSS-KSG Workshop.
Wednesday, Feb. 14, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #6 Wednesday, Feb. 14, 2007 Dr. Jae Yu 1.Neutrino Oscillation Formalism 2.Neutrino.
(some) Future CMB Constraints on fundamental physics Alessandro Melchiorri Universita’ di Roma, “La Sapienza” MIAMI2010, Fort Lauderdale December 15th.
Weighing neutrinos with Cosmology Fogli, Lisi, Marrone, Melchiorri, Palazzo, Serra, Silk hep-ph , PRD 71, , (2005) Paolo Serra Physics Department.
Application of neutrino spectrometry
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
NEUTRINO PHYSICS FROM COSMOLOGY e     STEEN HANNESTAD, SDU HEP2003, 18 JULY 2003 e  
J. Goodman – January 03 The Solution to the Solar Problem Jordan A. Goodman University of Maryland January 2003 Solar Neutrinos MSW Oscillations Super-K.
Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Supernova Neutrinos Нейтрино от сверхновые Georg Raffelt, 17 th Lomonosov.
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
Cosmological aspects of neutrinos (III) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
1 Luca Stanco, INFN-Padova (for the OPERA collaboration) Search for sterile neutrinos at Long-BL The present scenario and the “sterile” issue at 1 eV mass.
Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Crab Nebula Neutrino Champagne, LowNu2009, 19  21 Oct.
A black hole: The ultimate space-time warp Ch. 5.4 A black hole is an accumulation of mass so dense that nothing can escape its gravitational force, not.
Precise calculation of the relic neutrino density Sergio Pastor (IFIC) ν JIGSAW 2007 TIFR Mumbai, February 2007 In collaboration with T. Pinto, G, Mangano,
Neutrinos in Cosmology (II) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
PRECISION COSMOLOGY AND NEW PHYSICS STEEN HANNESTAD, AARHUS UNIVERSITY NExT, SOUTHAMPTON, 27 NOVEMBER 2013.
Neutrinos Supernova Neutrinos Crab Nebula
Neutrino Cosmology and Astrophysics Jenni Adams University of Canterbury, New Zealand TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Rencontres de Moriond, March 2010 Electroweak Interactions and Unified Theories Neutrinos from Supernovae Basudeb Dasgupta Max Planck Institute for.
Cosmological aspects of neutrinos (II) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
Neutrino physics: The future Gabriela Barenboim TAU04.
NEUTRINOS IN NUCLEOSYNTHESIS AND STRUCTURE FORMATION STEEN HANNESTAD UNIVERSITY OF SOUTHERN DENMARK NOW2004, 17 SEPTEMBER 2004 e    
Supernova Neutrinos Physics Opportunities with Flavor Oscillations
Astrophysical Constraints on Secret Neutrino Interactions
Jan Hamann Rencontres de Moriond (Cosmology) 21st March 2016
Sterile Neutrinos and WDM
SOLAR ATMOSPHERE NEUTRINOS
Neutrino Masses in Cosmology
Precision cosmology and neutrinos
Neutrinos as probes of ultra-high energy astrophysical phenomena
The neutrino mass hierarchy and supernova n
Neutrino Mass Bounds from Onbb Decays and Large Scale Structures
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
ν Are we close to measuring the neutrino hierarchy? Filipe B. Abdalla
Presentation transcript:

ASTROPHYSICAL NEUTRINOS STEEN HANNESTAD, Aarhus University GLA2011, JYVÄSKYLÄ e    

Where do Neutrinos Appear in Nature? Astrophysical Accelerators Soon ? Cosmic Big Bang (Today 330 /cm 3 ) Indirect Evidence Indirect Evidence Nuclear Reactors Particle Accelerators Particle Accelerators Earth Atmosphere (Cosmic Rays) Sun Supernovae (Stellar Collapse) SN 1987A SN 1987A Earth Crust (NaturalRadioactivity)

Fermion Mass Spectrum meVeVkeVMeVGeVTeV dsb Q =  1/3 uct Q =  2/3 Charged Leptons e All flavors 3 Neutrinos

FLAVOUR STATESPROPAGATION STATES MIXING MATRIX (UNITARY)

Georg Raffelt, MPI Physics, Munich 2 nd Schrödinger Lecture, University Vienna, 10 May 2011 Sanduleak Sanduleak  Large Magellanic Cloud Distance 50 kpc ( light years) Tarantula Nebula Supernova 1987A 23 February 1987

Stellar Collapse and Supernova Explosion Collapse (implosion) Explosion Newborn Neutron Star

Stellar Collapse and Supernova Explosion Newborn Neutron Star Neutrino cooling by diffusion

Neutrino Signal of Supernova 1987A Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty  1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty  50 ms Within clock uncertainties, all signals are contemporaneous

Interpreting SN 1987A Neutrinos Jegerlehner, Neubig & Raffelt, PRD 54 (1996) 1194 Contours at CL 68.3%, 90% and 95.4% Recent long-term simulations (Basel, Garching)

Three Phases of Neutrino Emission Prompt e burst AccretionCooling Shock breakout De-leptonization of outer core layers Cooling on neutrino diffusion time scale Spherically symmetric model (10.8 M ⊙ ) with Boltzmann neutrino transport Explosion manually triggered by enhanced CC interaction rate Fischer et al. (Basel group), A&A 517:A80, 2010 [arxiv: ]

Exploding Models (8–10 Solar Masses) with O-Ne-Mg-Cores Kitaura, Janka & Hillebrandt: “Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae”, astro-ph/

Georg Raffelt, MPI Physics, Munich 2 nd Schrödinger Lecture, University Vienna, 10 May 2011 Flavor Oscillations Neutrinos from Next Nearby SN

Operational Detectors for Supernova Neutrinos Super-Kamiokande (10 4 ) KamLAND (400) MiniBooNE(200) In brackets events for a “fiducial SN” at distance 10 kpc LVD (400) Borexino (100) IceCube (10 6 ) Baksan Baksan (100) (100)

Georg Raffelt, MPI Physics, Munich 2 nd Schrödinger Lecture, University Vienna, 10 May 2011 Flavor Oscillations Supernova Rate

Georg Raffelt, MPI Physics, Munich 2 nd Schrödinger Lecture, University Vienna, 10 May 2011 Local Group of Galaxies Current best neutrino detectors sensitive out to few 100 kpc With megatonne class (30 x SK) 60 events from Andromeda

Core-Collapse SN Rate in the Milky Way References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro-ph/ Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekseev et al., JETP 77 (1993) 339 and my update. Gamma rays from 26 Al (Milky Way) Historical galactic SNe (all types) SN statistics in external galaxies No galactic neutrino burst Core-collapse SNe per century van den Bergh & McClure (1994) Cappellaro & Turatto (2000) Diehl et al. (2006) Tammann et al. (1994) Strom (1994) 90 % CL (30 years) Alekseev et al. (1993)

Diffuse Supernova Neutrino Background (DSNB) Beacom & Vagins, PRL 93:171101,2004

Neutrino Oscillations in Matter 2-flavor neutrino evolution as an effective 2-level problem Mass-squared matrix, rotated by mixing angle  relative to interaction basis, drives oscillations With a 2  2 Hamiltonian matrix

Suppression of Oscillations in Supernova Core Inside a SN core, Inside a SN core, flavors are “de-mixed” flavors are “de-mixed” Very small oscillation Very small oscillation amplitude amplitude Trapped e-lepton Trapped e-lepton number can only number can only escape by diffusion escape by diffusion

Signature of Flavor Oscillations 1-3-mixing scenarios ABC Normal (NH) Inverted (IH) Any (NH/IH)Mass ordering adiabaticnon-adiabaticMSW conversion 0 0 NoYes May distinguish mass ordering Assuming collective effects are not important during accretion phase (Chakraborty et al., arXiv: v1)

Normal hierarchyInverted hierarchy If neutrino masses are hierarchical then oscillation experiments do not give information on the absolute value of neutrino masses If neutrino masses are degenerate no information can be gained from such experiments. Experiments which rely on either the kinematics of neutrino mass or the spin-flip in neutrinoless double beta decay are the most efficient for measuring m 0 SOLAR KAMLAND ATMO. K2K MINOS

LIGHTEST INVERTED NORMAL HIERARCHICALDEGENERATE

experimental observable is m 2 model independent neutrino mass from ß-decay kinematics only assumption: relativistic energy-momentum relation E 0 = 18.6 keV T 1/2 = 12.3 y ß-decay and neutrino mass T2:T2:

Tritium decay endpoint measurements have provided limits on the electron neutrino mass This translates into a limit on the sum of the three mass eigenstates Mainz experiment, final analysis (Kraus et al.)

NEUTRINO MASS AND ENERGY DENSITY FROM COSMOLOGY NEUTRINOS AFFECT STRUCTURE FORMATION BECAUSE THEY ARE A SOURCE OF DARK MATTER (n ~ 100 cm -3 ) HOWEVER, eV NEUTRINOS ARE DIFFERENT FROM CDM BECAUSE THEY FREE STREAM SCALES SMALLER THAN d FS DAMPED AWAY, LEADS TO SUPPRESSION OF POWER ON SMALL SCALES FROM

N-BODY SIMULATIONS OF  CDM WITH AND WITHOUT NEUTRINO MASS (768 Mpc 3 ) – GADGET 2 Haugboelle & STH, Aarhus University 256 Mpc

DARK MATTERNEUTRINOS SIMULATION WITH STH, HAUGBØLLE, RIIS & SCHULTZ (IN PREPARATION)

AVAILABLE COSMOLOGICAL DATA

WMAP-7 TEMPERATURE POWER SPECTRUM LARSON ET AL, ARXIV

LARGE SCALE STRUCTURE SURVEYS - 2dF AND SDSS

SDSS DR-7 LRG SPECTRUM (Reid et al ’09)

S m = 0.3 eV FINITE NEUTRINO MASSES SUPPRESS THE MATTER POWER SPECTRUM ON SCALES SMALLER THAN THE FREE-STREAMING LENGTH S m = 1 eV S m = 0 eV P(k)/P(k,m 

NOW, WHAT ABOUT NEUTRINO PHYSICS?

WHAT IS THE PRESENT BOUND ON THE NEUTRINO MASS? STH, MIRIZZI, RAFFELT, WONG (arxiv:1004:0695) HAMANN, STH, LESGOURGUES, RAMPF & WONG (arxiv: ) DEPENDS ON DATA SETS USED AND ALLOWED PARAMETERS USING THE MINIMAL COSMOLOGICAL MODEL THERE ARE MANY ANALYSES IN THE LITERATURE JUST ONE EXAMPLE

THE NEUTRINO MASS FROM COSMOLOGY PLOT Larger model space More data CMB only + SDSS + SNI-a +WL +Ly-alpha Minimal  CDM +N +w+…… 1.1 eV 0.6 eV ~ 0.5 eV ~ 0.2 eV ~ 2 eV2.? eV??? eV ~ 1 eV1-2 eV eV eV

Gonzalez-Garcia et al., arxiv:

WHAT IS N  A MEASURE OF THE ENERGY DENSITY IN NON-INTERACTING RADIATION IN THE EARLY UNIVERSE THE STANDARD MODEL PREDICTION IS BUT ADDITIONAL LIGHT PARTICLES (STERILE NEUTRINOS, AXIONS, MAJORONS,…..) COULD MAKE IT HIGHER Mangano et al., hep-ph/

TIME EVOLUTION OF THE 95% BOUND ON N ESTIMATED PLANCK SENSITIVITY Pre-WMAP WMAP-1 WMAP-3 WMAP-5 WMAP-7

ASSUMING A NUMBER OF ADDITIONAL STERILE STATES OF APPROXIMATELY EQUAL MASS, TWO QUALITATIVELY DIFFERENT HIERARCHIES EMERGE 3+N N+3 s s A A A STERILE NEUTRINO IS PERHAPS THE MOST OBVIOUS CANDIDATE FOR AN EXPLANATION OF THE EXTRA ENERGY DENSITY Hamann, STH, Raffelt, Tamborra, Wong, arxiv: (PRL)

WHAT IS IN STORE FOR THE FUTURE? BETTER CMB TEMPERATURE AND POLARIZATION MEASUREMENTS (PLANCK) LARGE SCALE STRUCTURE SURVEYS AT HIGH REDSHIFT MEASUREMENTS OF WEAK GRAVITATIONAL LENSING ON LARGE SCALES

Distortion of background images by foreground matter UnlensedLensed WEAK LENSING – A POWERFUL PROBE FOR THE FUTURE

EUCLID ESA M-CLASS MISSION

STH, TU & WONG 2006