10.2 Parabolas Where is the focus and directrix compared to the vertex? How do you know what direction a parabola opens? How do you write the equation.

Slides:



Advertisements
Similar presentations
Parabola Conic section.
Advertisements

The Parabola 3.6 Chapter 3 Conics 3.6.1
Objectives Write the standard equation of a parabola and its axis of symmetry. Graph a parabola and identify its focus, directrix, and axis of symmetry.
9.2 Parabola Hyperbola/Parabola Quiz: FRIDAY Concis Test: March 26.
Section 9.3 The Parabola.
Unit 5 Conics... The parabola is the locus of all points in a plane that are the same distance from a line in the plane, the directrix, as from a fixed.
8.2 Graph and Write Equations of Parabolas
EXAMPLE 1 Graph an equation of a parabola SOLUTION STEP 1 Rewrite the equation in standard form x = – Write original equation Graph x = – y.
Section 9.1 Conics.
Graph an equation of a parabola
Parabolas Section The parabola is the locus of all points in a plane that are the same distance from a line in the plane, the directrix, as from.
INTRO TO CONIC SECTIONS. IT ALL DEPENDS ON HOW YOU SLICE IT! Start with a cone:
Parabolas.
Recall that the equations for a parabola are given by ...
Table of Contents Parabola - Definition and Equations Consider a fixed point F in the plane which we shall call the focus, and a line which we will call.
Chapter 9 Analytic Geometry.
Today in Precalculus Go over homework Notes: Parabolas with vertex other than (0,0) Homework.
10.2 Parabolas What you should learn: Goal1 Goal2 Graph and write equations of parabolas. Identify the FOCUS and DIRECTRIX of the parabola Parabolas.
10.2 Parabolas By: L. Keali’i Alicea. Parabolas We have seen parabolas before. Can anyone tell me where? That’s right! Quadratics! Quadratics can take.
ALGEBRA 2 Write an equation for a graph that is the set of all points in the plane that are equidistant from point F(0, 1) and the line y = –1. You need.
Section 10.1 Parabolas Objectives: To define parabolas geometrically.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
6 minutes Warm-Up For each parabola, find an equation for the axis of symmetry and the coordinates of the vertex. State whether the parabola opens up.
PARABOLAS GOAL: GRAPH AND EQUATIONS OF PARABOLAS.

10.2 The Parabola. A parabola is defined as the collection of all points P in the plane that are the same distance from a fixed point F as they are from.
TH EDITION LIAL HORNSBY SCHNEIDER COLLEGE ALGEBRA.
Section 11.1 Section 11.2 Conic Sections The Parabola.
Chapter 9 Conic Sections: Circles and Parabolas
Advanced Geometry Conic Sections Lesson 3
Parabola  The set of all points that are equidistant from a given point (focus) and a given line (directrix).
Warm up Find the coordinates of the center, the foci, vertices and the equation of the asymptotes for.
Conic Sections Dr. Shildneck Fall, Parabolas CONIC SECTIONS.
The Parabola. Definition of a Parabola A Parabola is the set of all points in a plane that are equidistant from a fixed line (the directrix) and a fixed.
Page 768, 8-28 even, 58-62even 8) Inconsistent 10) (-1, 2), con and ind 12) (1, 1), con and ind 14) (26/25, -7/25), con and ind 16) Con and dependent 18)
Conic Sections The Parabola. Introduction Consider a ___________ being intersected with a __________.
Conics: Parabolas. Parabolas: The set of all points equidistant from a fixed line called the directrix and a fixed point called the focus. The vertex.
Warm Up Find the distance between the points 1. (3,4)(6,7) 2. (-3,7)(-7,3)
 (x-h) 2 = 4p(y-k)  (y-k) 2 = 4p(x-h) If the x value is greater than 1 the parabola will open up. If the x value is less than 1 the parabola will open.
Distance The distance between any two points P and Q is written PQ. Find PQ if P is (9, 1) and Q is (2, -1)
Conic Sections. Objective Given a translation, I can graph an equation for a conic section.
10.3 Circles 10.3 Circles What is the standard form equation for a circle? Why do you use the distance formula when writing the equation of a circle? What.
INTRO TO CONIC SECTIONS. IT ALL DEPENDS ON HOW YOU SLICE IT! Start with a cone:
Copyright © by Holt, Rinehart and Winston. All Rights Reserved. Objectives Write and graph the standard equation of a parabola given sufficient information.
Warm-Up Exercises 1. Identify the axis of symmetry for the graph of y = 3x 2. ANSWER x = 0 2. Identify the vertex of the graph of y = 3x 2. ANSWER (0,
HW: Pg ,28-30even, even, 50-56even, Do Now: Take out your pencil, notebook, and calculator. 1) Draw a parabola with a vertex, focus.
Objectives: You will be able to define parametric equations, graph curves parametrically, and solve application problems using parametric equations. Agenda:
Writing Equations of Parabolas
11.3 PARABOLAS Directrix (L): A line in a plane.
The Parabola 10.1.
Section 9.1 Parabolas.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
2-3: Focus of a Parabola Explore the focus and the directrix of a parabola. Write equations of parabolas.
The Parabola Wednesday, November 21, 2018Wednesday, November 21, 2018
2-3: Focus of a Parabola Explore the focus and the directrix of a parabola. Write equations of parabolas.
Focus of a Parabola Section 2.3.
Parabolas Section
Parabolas.
10.2 Parabolas.
9.2 Graph and Write Equations of Parabolas
Warm-Up 1. Find the distance between (3, -3) and (-1, 5)
Section 9.3 The Parabola.
Parabolas.
Section 9.3 The Parabola.
Intro to Conic Sections
5.1 Parabolas a set of points whose distance to a fixed point (focus) equals it’s distance to a fixed line (directrix) A Parabola is -
Conic Sections - Parabolas
5.1 Parabolas a set of points whose distance to a fixed point (focus) equals it’s distance to a fixed line (directrix) A Parabola is -
Parabolas a set of points whose distance to a fixed point (focus) equals it’s distance to a fixed line (directrix) A Parabola is -
Presentation transcript:

10.2 Parabolas Where is the focus and directrix compared to the vertex? How do you know what direction a parabola opens? How do you write the equation of a parabola given the focus/directrix? What is the general equation for a parabola?

Parabolas A parabola is defined in terms of a fixed point, called the focus, A parabola is the set of all points P(x,y) in the plane whose distance to the focus focus and a fixed line, called the directrix. equals its distance to the directrix. directrix axis of symmetry

Horizontal Directrix Standard Equation of a parabola with its vertex at the origin is x y D(x, –p) P(x, y) F(0, p) y = –p O x2 = 4py p > 0: opens upward p < 0: opens downward focus: (0, p) directrix: y = –p axis of symmetry: y-axis

Vertical Directrix Standard Equation of a parabola with its vertex at the origin is x y D(x, –p) P(x, y) F(p, 0) x = –p O y2= 4px p > 0: opens right p < 0: opens left focus: (p, 0) directrix: x = –p axis of symmetry: x-axis

Example 1 Graph . Label the vertex, focus, and directrix. y2 = 4px Identify p. -4 -2 2 4 y2 = 4(1)x So, p = 1 Since p > 0, the parabola opens to the right. Vertex: (0,0) Focus: (1,0) Directrix: x = -1

Example 1 Graph . Label the vertex, focus, and directrix. Y2 = 4x y x Use a table to sketch a graph -4 -2 2 4 y x 2 4 -2 -4 1 4 1 4

Example 2 Write the standard equation of the parabola with its vertex at the origin and the directrix y = -6. Since the directrix is below the vertex, the parabola opens up Since y = -p and y = -6, p = 6 x2=4(6)y x2 = 24y

Where is the focus and directrix compared to vertex? The focus is a point on the line of symmetry and the directrix is a line below the vertex. The focus and directrix are equidistance from the vertex. How do you know what direction a parabola opens? x2, graph opens up or down, y2, graph opens right or left How do you write the equation of a parabola given the focus/directrix? Find the distance from the focus/directrix to the vertex (p value) and substitute into the equation. What is the general equation for a parabola? x2= 4py (opens up [p>0] or down [p<0]), y2 = 4px (opens right [p>0] or left [p<0])

Assignment p. 598, 16-21, 23-53 odd

10.2 Parabolas, day 2 What does it mean if a parabola has a translated vertex? What general equations can you use for a parabola when the vertex has been translated?

Standard Equation of a Translated Parabola Vertical axis: (x − h)2 = 4p(y − k) vertex: (h, k) focus: (h, k + p) directrix: y = k – p axis of symmetry: x = h

Standard Equation of a Translated Parabola Horizontal axis: (y − k)2 = 4p(x − h) vertex: (h, k) focus: (h + p, k) directrix: x = h - p axis of symmetry: y = k

Example 3 Write the standard equation of the parabola with a focus at F(-3,2) and directrix y = 4. Sketch the info. The parabola opens downward, so the equation is of the form (x − h)2 = 4p(y − k) vertex: (-3,3) h = -3, k = 3 p = -1 (x + 3)2 = 4(−1)(y − 3)

Example 4 Write an equation of a parabola whose vertex is at (−2,1) and whose focus is at (−3, 1). Begin by sketching the parabola. Because the parabola opens to the left, it has the form (y −k)2 = 4p(x − h) Find h and k: The vertex is at (−2,1) so h = −2 and k = 1 Find p: The distance between the vertex (−2,1) and the focus (−3,1) by using the distance formula. p = −1 (y − 1)2 = −4(x + 2)

What does it mean if a parabola has a translated vertex? It means that the vertex of the parabola has been moved from (0,0) to (h,k). What general equations can you use for a parabola when the vertex has been translated? (y-k)2 =4p(x-h) (x-h)2 =4p(y-k)

Assignment p. 598, 38-44 even, 54-68 even p. 628, 15-16, 22, 28