1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.

Slides:



Advertisements
Similar presentations
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Advertisements

1 Chapter 9 Hypothesis Testing Developing Null and Alternative Hypotheses Type I and Type II Errors One-Tailed Tests About a Population Mean: Large-Sample.
1 1 Slide Chapter 9 Hypothesis Tests Developing Null and Alternative Hypotheses Developing Null and Alternative Hypotheses Type I and Type II Errors Type.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Hypothesis Testing Developing Null and Alternative Hypotheses Developing Null and Alternative Hypotheses Type I and Type II Errors Type I and Type II Errors.
1 1 Slide STATISTICS FOR BUSINESS AND ECONOMICS Seventh Edition AndersonSweeneyWilliams Slides Prepared by John Loucks © 1999 ITP/South-Western College.
1 1 Slide MA4704Gerry Golding Developing Null and Alternative Hypotheses Hypothesis testing can be used to determine whether Hypothesis testing can be.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 9 Hypothesis Testing Developing Null and Alternative Hypotheses Developing Null and.
Objectives (BPS chapter 15)
Chapter 10 Section 2 Hypothesis Tests for a Population Mean
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide Hypothesis Testing Chapter 9 BA Slide Hypothesis Testing The null hypothesis, denoted by H 0, is a tentative assumption about a population.
Chapter 10: Hypothesis Testing
1 1 Slide ©2009. Econ-2030-Applied Statistics (Dr. Tadesse) Chapter 9 Learning Objectives Population Mean:  Unknown Population Mean:  Unknown Population.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 9 Chapter 10 Chapter 11 Chapter 12
Pengujian Hipotesis Nilai Tengah Pertemuan 19 Matakuliah: I0134/Metode Statistika Tahun: 2007.
Chapter 8 Introduction to Hypothesis Testing
Chapter 10 – Hypothesis Testing What is a hypothesis? A statement about a population that may or may not be true. What is hypothesis testing? A statistical.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 8-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
Fall 2006 – Fundamentals of Business Statistics 1 Chapter 8 Introduction to Hypothesis Testing.
Chapter 3 Hypothesis Testing. Curriculum Object Specified the problem based the form of hypothesis Student can arrange for hypothesis step Analyze a problem.
1 1 Slide © 2006 Thomson/South-Western Chapter 9 Hypothesis Testing Developing Null and Alternative Hypotheses Developing Null and Alternative Hypotheses.
1 Pertemuan 08 Pengujian Hipotesis 1 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
Inferences About Process Quality
Chapter 9 Hypothesis Testing.
Chapter 8 Introduction to Hypothesis Testing
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
©2006 Thomson/South-Western 1 Chapter 10 – Hypothesis Testing for the Mean of a Population Slides prepared by Jeff Heyl Lincoln University ©2006 Thomson/South-Western.
Hypothesis Testing with One Sample
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 9 Hypothesis Testing.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
© 2002 Thomson / South-Western Slide 9-1 Chapter 9 Hypothesis Testing with Single Samples.
Confidence Intervals and Hypothesis Testing - II
Hypothesis Testing.
1 1 Slide © 2005 Thomson/South-Western Chapter 9, Part A Hypothesis Tests Developing Null and Alternative Hypotheses Developing Null and Alternative Hypotheses.
Claims about a Population Mean when σ is Known Objective: test a claim.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 8 Hypothesis Testing. Section 8-1: Steps in Hypothesis Testing – Traditional Method Learning targets – IWBAT understand the definitions used in.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Tests of significance: The basics BPS chapter 15 © 2006 W.H. Freeman and Company.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western/Thomson Learning.
Hypothesis Testing with One Sample Chapter 7. § 7.1 Introduction to Hypothesis Testing.
1 1 Slide © 2004 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 Introduction to Hypothesis Testing. 2 What is a Hypothesis? A hypothesis is a claim A hypothesis is a claim (assumption) about a population parameter:
1 Hypothesis testing can be used to determine whether Hypothesis testing can be used to determine whether a statement about the value of a population parameter.
Hypothesis testing Chapter 9. Introduction to Statistical Tests.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved OPIM 303-Lecture #7 Jose M. Cruz Assistant Professor.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 9 Hypothesis Testing Developing Null and Alternative Hypotheses Developing Null and.
1 1 Slide © 2003 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
Chapter 8 Introduction to Hypothesis Testing ©. Chapter 8 - Chapter Outcomes After studying the material in this chapter, you should be able to: 4 Formulate.
1 Chapter 9 Hypothesis Testing. 2 Chapter Outline  Developing Null and Alternative Hypothesis  Type I and Type II Errors  Population Mean: Known 
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 8 Hypothesis Testing.
Aim: How do we use a t-test?
T T Population Hypothesis Tests Purpose Allows the analyst to analyze the results of hypothesis testing for known large sample means, small.
© Copyright McGraw-Hill 2004
Formulating the Hypothesis null hypothesis 4 The null hypothesis is a statement about the population value that will be tested. null hypothesis 4 The null.
Tests of significance: The basics BPS chapter 14 © 2006 W.H. Freeman and Company.
Hypothesis Testing Chapter Hypothesis Testing  Developing Null and Alternative Hypotheses  Type I and Type II Errors  One-Tailed Tests About.
Chapter 9 -Hypothesis Testing
Slides by JOHN LOUCKS St. Edward’s University.
Business Statistics Topic 7
Statistics for Business and Economics (13e)
Chapter 9 Hypothesis Testing.
Chapter 9: Hypothesis Testing
Presentation transcript:

1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach

2 2 Slide IS 310 – Business Statistics Hypothesis Testing What is a Hypothesis? A statement about population that may or may not be true. Examples: O The average nicotine content of a new brand of cigarette is 0.05 milligrams. O The average life of a new battery is over 72 months. O The proportion of all registered voters in the US who favor a Presidential candidate is What is Hypothesis Testing? A procedure to test a hypothesis

3 3 Slide IS 310 – Business Statistics Hypothesis Testing Hypothesis testing is used under several situations: O To test if a new drug is more effective O To test if a new process improves a product O To test if employee training improves employee job rating O To test if a new bonus plan increases sales performance O To test if new advertising increases sales volume And a host of similar situations

4 4 Slide IS 310 – Business Statistics Hypothesis Testing Hypothesis Testing Developing Null and Alternative Hypotheses Developing Null and Alternative Hypotheses Type I and Type II Errors Type I and Type II Errors Population Mean:  Known Population Mean:  Known Population Mean:  Unknown Population Mean:  Unknown

5 5 Slide IS 310 – Business Statistics Developing Null and Alternative Hypotheses n The Null hypothesis is denoted by H n o n The Alternative hypothesis is denoted by H n a n The Null hypothesis is written in one of the following three ways: n H : µ = a value n o or n H : µ ≤ a value n o or n H : µ ≥ a value n o

6 6 Slide IS 310 – Business Statistics Developing Null and Alternative Hypotheses n The Alternative hypothesis is written in such a way that it is different from the Null hypothesis. n H : µ = 25 n o n H : µ ≠ 25 or H : µ 25 n a a a n H : µ ≥ 25 n o n H : µ < 25 n a

7 7 Slide IS 310 – Business Statistics Developing Null and Alternative Hypotheses n Rules for the Null and Alternative Hypotheses: n 1. The Null hypothesis must have an equal sign. n 2. The Alternative hypothesis must be different from n the Null hypothesis.

8 8 Slide IS 310 – Business Statistics One-tailed(lower-tail)One-tailed(upper-tail)Two-tailed Summary of Forms for Null and Alternative Hypotheses about a Population Mean n The equality part of the hypotheses always appears in the null hypothesis. in the null hypothesis. In general, a hypothesis test about the value of a In general, a hypothesis test about the value of a population mean  must take one of the following population mean  must take one of the following three forms (where  0 is the hypothesized value of three forms (where  0 is the hypothesized value of the population mean). the population mean).

9 9 Slide IS 310 – Business Statistics Examples of Null and Alternative Hypotheses n Example on Page 340: n A particular automobile model currently gets an average fuel efficiency of 24 MPG. A new fuel injection system has been developed that increases the MPG. We want to test this claim. n H : µ = 24 or µ ≤ 24 n o n H : µ > 24 n a

10 Slide IS 310 – Business Statistics Examples of Null and Alternative Hypotheses n Example on Page 340/341: n Soft drink containers are filled with an average of at least 67.6 fluid ounces. We want to test if these containers do indeed hold 67.6 ounces. n H : µ ≥ 67.6 n o n H : µ < 67.6 n a

11 Slide IS 310 – Business Statistics Examples of Null and Alternative Hypotheses n Example on Page 341: n A particular part must have an average (or mean) length of two inches. The part is not accepted if it is less than or more than two inches. You want to write the two hypotheses for this situation. n H : µ = 2 n o n H : µ ≠ 2 n a

12 Slide IS 310 – Business Statistics Sample Problems on Null and Alternate Hypotheses n Problem # 1 (Page 342) n H : µ ≤ 600 H : µ > 600 n 0 a n Problem # 2 (Page 342) n H : µ ≤ 14 H : µ > 14 n 0 a

13 Slide IS 310 – Business Statistics Sample Problems on Null and Alternative Hypotheses Problem # 3 (Page 342) H : µ = 32 H : µ ≠ 32 0 a 0 a Problem # 4 (Page 342) H : µ = 220 H :µ < a 0 a

14 Slide IS 310 – Business Statistics Type I Error Because hypothesis tests are based on sample data, Because hypothesis tests are based on sample data, we must allow for the possibility of errors. we must allow for the possibility of errors. n A Type I error is rejecting H 0 when it is true. n The probability of making a Type I error when the null hypothesis is true as an equality is called the null hypothesis is true as an equality is called the level of significance. level of significance. n Applications of hypothesis testing that only control the Type I error are often called significance tests. the Type I error are often called significance tests.

15 Slide IS 310 – Business Statistics Hypothesis Testing Steps for One Population Mean (known σ) n Steps: n 1. Develop the Null and the Alternative hypothesis. n 2. Determine the level of significance (  ). n 3. Get a sample of data and calculate test statistic as follows: n _ n x - µ n z = (µ is the value in H ) n σ /√ n o n 4. Obtain the critical value of z from Table 1 for the given value of . n 5. Draw area of rejection. n 5. Compare the critical value of z with the test statistic. If the n test statistic falls in the area of rejection, reject the Null n hypothesis.

16 Slide IS 310 – Business Statistics An Example Problem on Hypothesis Testing (Page 345) n Hilltop Coffee claims that a large can contains 3 pounds of coffee, on the average. Federal Trade Commission (FTC) wants to test the manufacturer’s claim at  = n A sample of 36 cans of coffee is selected and the value of the sample mean is calculated as The standard deviation is known as σ = n Step 1: H : µ = 3 or µ ≥ 3 n o n H : µ < 3 n a

17 Slide IS 310 – Business Statistics Example Problem n Step 2: n Determine the level of significance,  = 0.01 n Step 3: Calculate the test statistic as n 2.92 – n z = = = n 0.18/√ n Step 4: The critical value of z = (from Table 1) n Step 5: Draw the area of rejection (Figure 9.3 on page n 350. n Step 6: Compare critical z with test statistic. Reject H n o

18 Slide IS 310 – Business Statistics Hypothesis Testing p-values The concept of p-values calculates the strength of rejection of null hypothesis, H 0 When a null hypothesis is rejected, one can calculate the strength of rejection by computing the p-value. p-value represents the area to the right or left of the test statistic, z-statistic, depending on how the alternative hypothesis is written. The lower the p-value, greater the strength of rejection.

19 Slide IS 310 – Business Statistics p-Value Look at the following examples: Example 1 Example 2 Test-statistic, z= 3.0 Test-statistic, z = 1.97 Critical z-value = 1.96 Critical z-value = 1.96 Reject H Reject H p-value = p-value = In both examples, the null hypothesis is rejected. However, the strength of rejection is much stronger in Example 1

20 Slide IS 310 – Business Statistics Hypothesis Testing Steps for One Population Mean (Unknown σ) n Steps: n 1. Develop the Null and the Alternative Hypothesis. n 2. Determine the level of significance (). n 3. Get a sample of data and calculate the test statistic n - n x - µ n t = ( µ is the value in H ) n s/√n o n 4. Obtain the critical value of t from Table 2 for the given value n of . n 5. Draw area of rejection. n 6. Compare the critical value of t with the test statistic. If test n statistic falls in the area of rejection, reject the null n hypothesis.

21 Slide IS 310 – Business Statistics An Example Problem n Problem # 28 (Page 364) n H : µ = 3530 H : µ > 3530 n o a n Level of significance,  = 0.01 n Sample size, n = 92 degree of freedom = 92 – 1 = 91 n _ n Sample mean, x = 3740 s = 810 n _ n x - µ n t = = = 2.48 n s/√n 810/9.59 n Critical value of t from Table 2 is n Since test statistic falls in the area of rejection, reject null hypothesis

22 Slide IS 310 – Business Statistics p -Values and the t Distribution The format of the t distribution table provided in most The format of the t distribution table provided in most statistics textbooks does not have sufficient detail statistics textbooks does not have sufficient detail to determine the exact p -value for a hypothesis test. to determine the exact p -value for a hypothesis test. However, we can still use the t distribution table to However, we can still use the t distribution table to identify a range for the p -value. identify a range for the p -value. An advantage of computer software packages is that An advantage of computer software packages is that the computer output will provide the p -value for the the computer output will provide the p -value for the t distribution. t distribution.

23 Slide IS 310 – Business Statistics p-Value for Problem # 28 n Test statistic was 2.48 n If we look at the row with 91 degree of freedom and try to locate 2.48, we find it is between 0.01 and Therefore, the p-value is between 0.01 and n p-value = Between 0.01 and 0.005

24 Slide IS 310 – Business Statistics End of Chapter 9, Part A