Magnetic Fields in Molecular Clouds Richard M. Crutcher University of Illinois Collaborators:Tom Troland, University of Kentucky Edith Falgarone, Ecole Normale Superieure Shih-Ping Lai, University of Maryland Ramprasad Rao, SubMillimeter Array Paulo Cortes, University of Illinois Jason Kirk, University of Illinois Doug Roberts, Northwestern University Josep Girart, University of Barcelona
Outline of Talk possible roles of magnetic fields important parameters observational techniques observational result exemplars conclusions implications for study of CMB polarization the future
Possible Roles of Magnetic Fields formation of molecular clouds fragmentation to form cores support against collapse transport of angular momentum from central regions of cores, enabling star formation
Field Morphology Shu, The Physical Universe (1982) Strong B, magnetic support implies: non-tangled (smooth) field lines hourglass morphology
Mass-to-Flux Ratio: M/ Uniform disk Nakano & Nakamura (1978) Observing M/ definition Geometry correction Ciolek & Mouschovias (1994) mass/flux ratio gravitational collapse / magnetic support subcritical critical supercritical
Scaling of B with : B flux freezing: M mass conservation: Spherical collapse (weak magnetic fields) B 0 Ciolek & Mouschovias (1994) Magnetic support, ambipolar diffusion B 1 B 0.4 Mestel (1966)
2. Polarization of dust emission linear polarization B morphology of B pos indirectly (Chandrasekhar & Fermi): B pos 0.5(4 ) 1/2 V los / Observational Techniques 1. Zeeman effect 3. Goldreich-Kylafis effect anisotropic radiation field non-LTE magnetic sublevels linear polarization or B morphology of B pos Chandrasekhar-Fermi may be applied to estimate B pos V [dI/d ] B los Q,U [dI/d ] 2 B pos
L1544 Starless Core n(H 2 ) 5 10 5 cm -3, N(H 2 ) 4 10 22, 13 , B pos 140 G, c 0.8 Crutcher et al. (2004)
L1544 Starless Core Crutcher & Troland (2000) n(H 2 ) 5 10 5 cm -3, N(H 2 ) 4 10 22, 13 , B pos 140 G, c 0.8 Crutcher et al. (2004) n(H 2 ) 1 10 4, N(H 2 ) 9 10 21, B los = 11 µG, c 1.1
L183 & L1498 Starless Cores n(H 2 ) 3 10 5, N(H 2 ) 3 10 22, 13 , B pos 80 µG, c 0.9 Crutcher et al. (2004) Kirk & Crutcher (2005) L183L1498 40
NGC1333 IRAS4 (BIMA 230 GHz) Girart et al. (1999) B pos > 1 mG
NGC1333 IRAS4 (SMA 345 GHz) Rao, Girart and Marrone
DR21(OH) B los = 0.4, 0.7 mG Lai et al. (2003) Crutcher et al. (1999)
Linearly Polarized J=2-1 and J=1-0 Lines J=2-1 polarization is perpendicular to dust polarizaton and therefore parallel to the magnetic field J=1-0 polarization is orthogonal to J=2-1 polarization! requires two sources of anisotropic CO excitation –anisotropic velocity gradient (and ), and photon trapping –IR from compact dust cores DR21(OH) # of positions 21 – 10
DR21(OH) Cortes, Crutcher, & Watson (2005)
DR21(OH) 1.CO polarization: n(H 2 ) ~ 10 2, B pos 0.01 mG 2.Dust polarization & CN Zeeman: n(H 2 ) ~ 10 6, N(H 2 ) 3 B pos B los 0.7 mG, c 1.1 Combining 1 and 2, B 0.45
The Orion Molecular Cloud
NGC 2024 (Orion B) Magnetic Field Maps Crutcher et al. (1999)
NGC 2024 (Orion B) Lai, Crutcher, et al. (2001)
NGC 2024 SCUBA Dust Polarization Matthews et al. (2002)
Orion Molecular Cloud Girart et al. 2004
Orion Molecular Cloud Girart et al. 2004
Orion Molecular Cloud Rao et al. 1998Houde et al. 2004
W3OH CN Zeeman, B los =1.1 mG Turner & Welch 1984Falgarone, Crutcher, & Troland 2005
W3OH Gusten et al mG n(H 2 ) 6 10 6, N(H 2 ) 5 10 23, B los 3.1 mG, c 0.5
Mass to Magnetic Flux Ratios mass/flux ratio ( ) gravitational collapse /magnetic support H I clouds, subcritical!
Field Strength vs. Density B Weak B = 2/3 Strong B 0.4 0.47 ± 0.08
Conclusions for Molecular Cores 1.B 0, n < 10 3 molecular clouds form by accumulation along B 2.Magnetic fields usually not tangled B dominates turbulence 3.Hourglass B morphology on cores magnetic support 4.M/ ~ critical in molecular cores magnetic support 5.B , 2/3 magnetic support
Dust Polarization and the CBM Arce, et al 1998
Molecular Cirrus Desert, Bazell, & Boulanger 1988 Stark 1995
Some Telescopes Used for Study of B
Coming Telescope for Study of B