Magnetic Fields in Molecular Clouds Richard M. Crutcher University of Illinois Collaborators:Tom Troland, University of Kentucky Edith Falgarone, Ecole.

Slides:



Advertisements
Similar presentations
Magnetic Fields in T Tauri Disks A. Meredith Hughes Wesleyan University What Millimeter Polarimetry Can Tell Us Chat Hull, David Wilner, Sean Andrews,
Advertisements

The Serpens Star Forming Region in HCO +, HCN, and N 2 H + Michiel R. Hogerheijde Steward Observatory The University of Arizona.
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
Methanol maser polarization in W3(OH) Lisa Harvey-Smith Collaborators: Vlemmings, Cohen, Soria-Ruiz Joint Institute for VLBI in Europe.
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
1)Disks and high-mass star formation: existence and implications 2)The case of G : characteristics 3)Velocity field in G31.41: rotation or expansion?
Segunda parte. IRAS Vela Shell IRAS 100µ (30° x 30°)  Pup  Vel Feitzinger & Stüwe 1984 Fig. 1 14°x14°
From Pre-stellar Cores to Proto-stars: The Initial Conditions of Star Formation PHILIPPE ANDRE DEREK WARD-THOMPSON MARY BARSONY Reported by Fang Xiong,
2. 1 Yes, signal! Physical Properties of diffuse HI gas in the Galaxy from the Arecibo Millennium Survey T. H. Troland Physics & Astronomy Department.
Mapping Magnetic Field Structure in Star-forming Regions 賴詩萍 Oct 4, 2006, NTHU Phys Colloquium.
Molecular Tracers of Turbulent Shocks in Molecular Clouds Andy Pon, Doug Johnstone, Michael J. Kaufman ApJ, submitted May 2011.
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
A Survey of the Global Magnetic Fields of Giant Molecular Clouds Giles Novak, Northwestern University Instrument: SPARO Collaborators: P. Calisse, D. Chuss,
An introduction to the Physics of the Interstellar Medium V. Magnetic field in the ISM Patrick Hennebelle.
SOFIA/HAWC polarimetry of low-mass YSOs and their environs.
Multidimensional Models of Magnetically Regulated Star Formation Shantanu Basu University of Western Ontario Collaborators: Glenn E. Ciolek (RPI), Takahiro.
Magnetically Regulated Star Formation in Turbulent Clouds Zhi-Yun Li (University of Virginia) Fumitaka Nakamura (Niigata University) OUTLINE  Motivations.
Magnetic Fields in Star Formation Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics Tyler Bourke Smithsonian Astrophysical Observatory/SMA.
Magnetic Field Morphologies in NGC1333 IRAS4A: Evidence for Hour Glass Structure R. Rao (CfA) J. M. Girart (CSIC/IEEC) D. P. Marrone (CfA)
Magnetic fields in Orion’s Veil T. Troland Physics & Astronomy Department University of Kentucky Microstructures in the Interstellar Medium April 22, 2007.
Is SOFIA the large or the small scale? ALMA: resolution up to 0.02  / (mm), shortest  330  m Connecting Large and Small Scale Magnetic Fields.
Structure of circumstellar envelope around AGB and post-AGB stars Dinh-V-Trung Sun Kwok, P.J. Chiu, M.Y. Wang, S. Muller, A. Lo, N. Hirano, M. Mariappan,
Submillimeter Astronomy in the era of the SMA, Cambridge, June 14, 2005 Star Formation and Protostars at High Angular Resolution with the SMA Jes Jørgensen.
Magnetic Fields: Recent Past and Present Shantanu Basu The University of Western Ontario London, Ontario, Canada DCDLXV, Phil Myers Symposium Thursday,
University of Chicago 2007 July 30 SOFIA-POL 2007 The Infrared - Millimeter Polarization Spectrum John Vaillancourt California Institute of Technology.
WHAT MOLECULAR ABUNDANCES CAN TELL US ABOUT THE DYNAMICS OF STAR FORMATION Konstantinos Tassis Collaborators: Karen Willacy, Harold Yorke, Neal Turner.
Direct Measurement of a Magnetic Field at z=0.692 Art Wolfe Regina Jorgenson: IOA Tim Robishaw: UCB Carl Heiles:UCB Jason X. Prochaska:UCSC.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
1 Magnetic fields in star forming regions: theory Daniele Galli INAF-Osservatorio di Arcetri Italy.
2005 June 2260th Symposium on Molecular Spectroscopy Outflows and Magnetic Fields in L1448 IRS3 Woojin Kwon Leslie W. Looney Richard M. Crutcher Jason.
Masers observations of Magnetic fields during Massive Star Formation Wouter Vlemmings (Argelander-Institut für Astronomie, Bonn) with Gabriele Surcis,
The Story of Star Birth Shantanu Basu University of Western Ontario CAP Lecture, UWO, April 2, 2003.
AS 4002 Star Formation & Plasma Astrophysics Supercritical clouds Rapid contraction. Fragmentation into subregions –Also supercritical if size R ≥ clump.
Observing magnetic fields in star-forming regions Jim Cohen Jim Cohen The University of Manchester Jodrell Bank Observatory The University of Manchester.
ARE MAGNETIC FIELDS AND OUTFLOWS ALIGNED IN PROTOSTELLAR CORES? Chat Hull University of California, Berkeley Radio Astronomy Laboratory 4 April 2013 Institute.
Great Barriers in High Mass Star Formation, Townsville, Australia, Sept 16, 2010 Patrick Koch Academia Sinica, Institute of Astronomy and Astrophysics.
1 mm Polarization Science with CARMA Chat Hull UC Berkeley, Radio Astronomy Laboratory Collaborators: Dick Plambeck, Greg Engargiola, & all the CARMA staff.
THE ROLE OF MAGNETIC FIELDS
Magnetic Fields: Recent Progress and Future Tests Shantanu Basu The University of Western Ontario EPoS 2008, Ringberg Castle, Germany July 29, 2008.
Shih-Ping Lai 賴詩萍 (National Tsing-Hua University, Taiwan) 清華大學, 台灣.
From Clouds to Cores: Magnetic Field Effects on the Structure of Molecular Gas Shantanu Basu University of Western Ontario, Canada Collaborators: Takahiro.
Anchoring Magnetic Fields in Turbulent Molecular Clouds Hua-bai Li.
Masahiro Machida (Kyoto Univ.) Shu-ichiro Inutsuka (Kyoto Univ.), Tomoaki Matsumoto (Hosei Univ.) Outflow jet first coreprotostar v~5 km/s v~50 km/s 360.
Core Formation due to Magnetic Fields, Ambipolar Diffusion, and Turbulence Shantanu Basu The University of Western Ontario Collaborators: Glenn Ciolek.
Philamentary Structure and Velocity Gradients in the Orion A Cloud
Gravitational Collapse and Disk Formation in Magnetized Cores Susana Lizano CRyA, UNAM Transformational Science with ALMA: From Dust to Rocks to Planets,
Maite Beltrán Osservatorio Astrofisico di Arcetri The intringuing hot molecular core G
Fitting Magnetized Molecular Cloud Collapse Models to NGC 1333 IRAS 4A Pau Frau Josep Miquel Girart Daniele Galli Institut de Ciències de l’Espai (IEEC-CSIC)
Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka.
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Physics 778 – Star formation: Protostellar disks Ralph Pudritz.
Star forming regions in Orion. What supports Cloud Cores from collapsing under their own gravity? Thermal Energy (gas pressure) Magnetic Fields Rotation.
Gestazione e travaglio delle stelle, tra turbolenza e campi magnetici Daniele Galli Osservatorio Astrofisico di Arcetri WIYN Image: T.A. Rector (NOAO/AURA/NSF)
Magnetic Fields and Protostellar Cores Shantanu Basu University of Western Ontario YLU Meeting, La Thuile, Italy, March 24, 2004.
From magnetized cores to protoplanetary disks
A Survey of the Global Magnetic Fields of Giant Molecular Clouds Giles Novak, Northwestern University Instrument: SPARO Collaborators: P. Calisse, D. Chuss,
Characterizing Magnetized Turbulence through Magnetic Field Dispersion Martin Houde The University of Western Ontario CC2YSO - 19 May 2010.
NGC7538-IRS1: Polarized Dust & Molecular Outflow C. L. H. Hull (UC Berkeley), T. Pillai (Caltech), J.-H. Zhao (CfA), G. Sandell (SOFIA-USRA, NASA), M.
A resolution of the magnetic braking catastrophe during the second collapse cc2yso UWO, May 17, 2010 – Wolf Dapp Wolf B. Dapp & Shantanu Basu.
LDN 723: Can molecular emission be used as clock calibrators? Josep Miquel Girart Collaborators: J.M.Masqué,R.Estalella (UB) R.Rao (SMA)
AS 4002 Star Formation & Plasma Astrophysics Supersonic turbulence? If CO linewidths interpreted as turbulence, velocities approach virial values: Molecular.
The Structures on Sub-Jeans Scales, Fragmentation, and the Chemical Properties in Two Extremely Dense Orion Cores Zhiyuan Ren, Di Li (NAOC) and Nicolas.
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
Structure & Magnetic Fields of the Star-Forming Region NGC 6334A
Deuterium-Bearing Molecules in Dense Cores
A Turbulent Local Environment
Using ALMA to disentangle the Physics of Star Formation in our Galaxy
The University of Western Ontario
at:
Presentation transcript:

Magnetic Fields in Molecular Clouds Richard M. Crutcher University of Illinois Collaborators:Tom Troland, University of Kentucky Edith Falgarone, Ecole Normale Superieure Shih-Ping Lai, University of Maryland Ramprasad Rao, SubMillimeter Array Paulo Cortes, University of Illinois Jason Kirk, University of Illinois Doug Roberts, Northwestern University Josep Girart, University of Barcelona

Outline of Talk possible roles of magnetic fields important parameters observational techniques observational result exemplars conclusions implications for study of CMB polarization the future

Possible Roles of Magnetic Fields formation of molecular clouds fragmentation to form cores support against collapse transport of angular momentum from central regions of cores, enabling star formation

Field Morphology Shu, The Physical Universe (1982) Strong B, magnetic support implies: non-tangled (smooth) field lines hourglass morphology

Mass-to-Flux Ratio: M/  Uniform disk Nakano & Nakamura (1978) Observing M/  definition Geometry correction Ciolek & Mouschovias (1994) mass/flux ratio  gravitational collapse / magnetic support subcritical  critical  supercritical 

Scaling of B with  : B    flux freezing: M   mass conservation: Spherical collapse (weak magnetic fields) B   0 Ciolek & Mouschovias (1994) Magnetic support, ambipolar diffusion B   1 B   0.4 Mestel (1966)

2. Polarization of dust emission  linear polarization  B  morphology of B pos  indirectly (Chandrasekhar & Fermi):  B pos  0.5(4  ) 1/2  V los /  Observational Techniques 1. Zeeman effect 3. Goldreich-Kylafis effect  anisotropic radiation field  non-LTE magnetic sublevels  linear polarization  or  B  morphology of B pos  Chandrasekhar-Fermi may be applied to estimate B pos V  [dI/d ] B los Q,U  [dI/d ] 2 B pos

L1544 Starless Core n(H 2 )  5  10 5 cm -3, N(H 2 )  4  10 22,   13 , B pos  140  G, c  0.8 Crutcher et al. (2004)

L1544 Starless Core Crutcher & Troland (2000) n(H 2 )  5  10 5 cm -3, N(H 2 )  4  10 22,   13 , B pos  140  G, c  0.8 Crutcher et al. (2004) n(H 2 )  1  10 4, N(H 2 )  9  10 21, B los = 11 µG, c  1.1

L183 & L1498 Starless Cores n(H 2 )  3  10 5, N(H 2 )  3  10 22,   13 , B pos  80 µG, c  0.9 Crutcher et al. (2004) Kirk & Crutcher (2005) L183L1498   40 

NGC1333 IRAS4 (BIMA 230 GHz) Girart et al. (1999) B pos > 1 mG

NGC1333 IRAS4 (SMA 345 GHz) Rao, Girart and Marrone

DR21(OH) B los = 0.4, 0.7 mG Lai et al. (2003) Crutcher et al. (1999)

Linearly Polarized J=2-1 and J=1-0 Lines J=2-1 polarization is perpendicular to dust polarizaton and therefore parallel to the magnetic field J=1-0 polarization is orthogonal to J=2-1 polarization! requires two sources of anisotropic CO excitation –anisotropic velocity gradient (and  ), and photon trapping –IR from compact dust cores DR21(OH) # of positions  21 –  10

DR21(OH) Cortes, Crutcher, & Watson (2005)

DR21(OH) 1.CO polarization: n(H 2 ) ~ 10 2, B pos  0.01 mG 2.Dust polarization & CN Zeeman: n(H 2 ) ~ 10 6, N(H 2 )  3  B pos  B los  0.7 mG, c  1.1 Combining 1 and 2, B   0.45

The Orion Molecular Cloud

NGC 2024 (Orion B) Magnetic Field Maps Crutcher et al. (1999)

NGC 2024 (Orion B) Lai, Crutcher, et al. (2001)

NGC 2024 SCUBA Dust Polarization Matthews et al. (2002)

Orion Molecular Cloud Girart et al. 2004

Orion Molecular Cloud Girart et al. 2004

Orion Molecular Cloud Rao et al. 1998Houde et al. 2004

W3OH CN Zeeman, B los =1.1 mG Turner & Welch 1984Falgarone, Crutcher, & Troland 2005

W3OH Gusten et al mG n(H 2 )  6  10 6, N(H 2 )  5  10 23, B los  3.1 mG, c  0.5

Mass to Magnetic Flux Ratios mass/flux ratio ( )  gravitational collapse /magnetic support H I clouds, subcritical!

Field Strength vs. Density B    Weak B  = 2/3 Strong B   0.4   0.47 ± 0.08

Conclusions for Molecular Cores 1.B   0, n < 10 3  molecular clouds form by accumulation along B 2.Magnetic fields usually not tangled  B dominates turbulence 3.Hourglass B morphology on cores  magnetic support 4.M/  ~ critical in molecular cores  magnetic support 5.B   ,    2/3  magnetic support

Dust Polarization and the CBM Arce, et al 1998

Molecular Cirrus Desert, Bazell, & Boulanger 1988 Stark 1995

Some Telescopes Used for Study of B

Coming Telescope for Study of B